This study investigated the occurrence of antibiotic contamination in aquatic environments in Vietnam and proposed potential treatment technologies. Major sources of antibiotic release included urban domestic activities, livestock production, aquaculture, healthcare facilities, and pharmaceutical manufacturing. A wide range of antibiotics was detected at elevated concentrations in rivers, lakes, and canals, with the most frequently reported groups being sulfonamides, macrolides, quinolones, and tetracyclines, at levels ranging from several ng/l to thousands of ng/l. The paper critically reviewed existing treatment technologies, encompassing biological approaches such as activated sludge, biofilm reactors, and constructed wetlands; physical approaches including adsorption and membrane filtration; and chemical approaches such as Fenton oxidation, ozonation, and photocatalysis, with emphasis on their respective advantages and limitations. To address the specific conditions of Vietnam, a three-module integrated treatment model was proposed, consisting of activated sludge for organic matter degradation, activated carbon adsorption columns for antibiotic removal, and constructed wetlands for residual polishing. This integrated system was expected to provide high removal efficiency, low operational costs, and environmental sustainability. The findings offered a scientific basis for controlling antibiotic pollution, mitigating the risks of antimicrobial resistance, and protecting aquatic ecosystems.
Durand, G.A.; Raoult, D.; Dubourg, G., (2019). Antibiotic discovery: history, methods and perspectives. International Journal of Antimicrobial Agents, 53, 371-382. https://doi.org/10.1016/j.ijantimicag.2018.11.010.
Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P., (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-78849-3.
Cook, M.A.; Wright, G.D., (2022). The past, present, and future of antibiotics. Science Translational Medicine, 14. https://doi.org/10.1126/scitranslmed.abo7793.
Hutchings, M.I.; Truman, A.W.; Wilkinson, B., (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72-80. https://doi.org/10.1016/j.mib.2019.10.008.
Halawa, E.M.; Fadel, M.; Al-Rabia, M.W.; Behairy, A.; Nouh, N.A.; Abdo, M.; Olga, R.; Fericean, L.; Atwa, A.M.; El-Nablaway, M.; Abdeen, A., (2024). Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1305294.
Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C., (2021). Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 10, 1310. https://doi.org/10.3390/pathogens10101310.
Samrot, A.V.; Wilson, S.; Sanjay Preeth, R.S.; Prakash, P.; Sathiyasree, M.; Saigeetha, S.; Shobana, N.; Pachiyappan, S.; Rajesh, V.V., (2023). Sources of antibiotic contamination in wastewater and approaches to their removal—an overview. Sustainability, 15, 12639. https://doi.org/10.3390/su151612639.
Rafraf, I.D.; Lekunberri, I.; Sànchez-Melsió, A.; Aouni, M.; Borrego, C.M.; Balcázar, J.L., (2016). Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. Environmental Pollution, 219, 353-358. https://doi.org/10.1016/j.envpol.2016.10.062.
Managaki, S.; Murata, A.; Takada, H.; Tuyen, B.C.; Chiem, N.H., (2007). Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environmental Science & Technology, 41, 8004-8010. https://doi.org/10.1021/es0709021.
Hoa, P.T.P.; Managaki, S.; Nakada, N.; Takada, H.; Shimizu, A.; Anh, D.H.; Viet, P.H.; Suzuki, S., (2011). Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Science of the Total Environment, 409, 2894-2901. https://doi.org/10.1016/j.scitotenv.2011.04.030.
Shimizu, A.; Takada, H.; Koike, T.; Takeshita, A.; Saha, M.; Rinawati; Nakada, N.; Murata, A.; Suzuki, T.; Suzuki, S.; Chiem, N.H.; Tuyen, B.C.; Viet, P.H.; Siringan, M.A.; Kwan, C.; Zakaria, M.P.; Reungsang, A., (2013). Ubiquitous occurrence of sulfonamides in tropical Asian waters. Science of the Total Environment, 452-453, 108-115. https://doi.org/10.1016/j.scitotenv.2013.02.027.
Vo, T.-D.-H.; Bui, X.-T.; Cao, N.-D.-T.; Luu, V.-P.; Nguyen, T.-T.; Dang, B.-T.; Thai, M.-Q.; Nguyen, D.-D.; Nguyen, T.-S.; Dinh, Q.-T.; Dao, T.-S., (2016). Investigation of antibiotics in health care wastewater in Ho Chi Minh City, Vietnam. Environmental Monitoring and Assessment, 188. https://doi.org/10.1007/s10661-016-5704-6.
Binh, V.N.; Dang, N.; Anh, N.T.K.; Ky, L.X.; Thai, P.K., (2018). Antibiotics in the aquatic environment of Vietnam: sources, concentrations, risk and control strategy. Chemosphere, 197, 438-450. https://doi.org/10.1016/j.chemosphere.2018.01.061.
Thangrongthong, S.; Ladda, B.; Sittisom, P., (2025). A review of antibiotic contamination in wastewater: sources, impacts, and microbial bioremediation techniques. Water Environment Research: A Research Publication of the Water Environment Federation, 97, e70118.
Sosa-Hernández, J.E.; Rodas-Zuluaga, L.I.; López-Pacheco, I.Y.; Melchor-Martínez, E.M.; Aghalari, Z.; Limón, D.S.; Iqbal, H.M.N.; Parra-Saldívar, R., (2021). Sources of antibiotic pollutants in the aquatic environment under SARS-CoV-2 pandemic situation. Case Studies in Chemical and Environmental Engineering, 4, 100127. https://doi.org/10.1016/j.cscee.2021.100127.
Kusi, J.; Ojewole, C.O.; Ojewole, A.E.; Nwi-Mozu, I., (2022). Antimicrobial resistance development pathways in surface waters and public health implications. Antibiotics, 11, 821. https://doi.org/10.3390/antibiotics11060821.
Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z., (2019). Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontiers in Microbiology, 10, 338.
Chau, H.T.C.; Kadokami, K.; Duong, H.T.; Kong, L.; Nguyen, T.T.; Nguyen, T.Q.; Ito, Y., (2018). Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam. Environmental Science and Pollution Research International, 25, 7147-7156.
Ministry of Agriculture and Rural Development, (2016). Circular No. 10/2016/TT-BNNPTNT: Promulgating the list of veterinary drugs permitted for circulation and prohibited from use in Vietnam, and publishing HS codes for imported veterinary drugs. https://thuvienphapluat.vn/van-ban/Xuat-nhap-khau/Thong-tu-10-2016-TT-BNNPTNT-thuoc-thu-y-duoc-phep-luu-hanh-cam-su-dung-o-Viet-Nam-315674.aspx.
Van Cuong, N.; Nhung, N.T.; Nghia, N.H.; Mai Hoa, N.T.; Trung, N.V.; Thwaites, G.; Carrique-Mas, J., (2016). Antimicrobial consumption in medicated feeds in Vietnamese pig and poultry production. EcoHealth, 13, 490-498.
Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Nguyen, M.T.; Thai, H.Q.; Ho, M.H.; Thwaites, G.; Ngo, H.T.; Baker, S.; Carrique-Mas, J., (2016). Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli bacteria. Applied and Environmental Microbiology, 82, 3727-3735.
Dang Pham Kim; Saegerman, C.; Douny, C.; Ton Vu Dinh; Xuan BoHa; Binh Dang Vu; Ngan Pham Hong; Scippo, M., (2013). First survey on the use of antibiotics in pig and poultry production in the Red River Delta region of Vietnam. Food Public Health, 3, 247–256.
Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; Dyar, O.J.; Tamhankar, A.J.; Stålsby Lundborg, C., (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environment International, 114, 131-142.
Zha, Y.; Li, Q.; Liu, H.; Ge, Y.; Wei, Y.; Wang, H.; Zhang, L.; Fan, J.; Chen, Y.; Zhang, C.; Zhou, T.; Zhang, W., (2023). Occurrence and ecological risk assessment of antibiotics in manure and the surrounding soil from typical chicken farms in Hangzhou, China. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1241405.
MARD, M.J.M.H., (2014). List of drugs, chemicals and antibiotics of banned or limited use for aquaculture and veterinary purposes. 2014.
Rico, A.; Phu, T.M.; Satapornvanit, K.; Min, J.; Shahabuddin, A.M.; Henriksson, P.J.G.; Murray, F.J.; Little, D.C.; Dalsgaard, A.; Van Den Brink, P.J., (2013). Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412-413, 231-243. https://doi.org/10.1016/j.aquaculture.2013.07.028.
Nguyen Dang Giang, C.; Sebesvari, Z.; Renaud, F.; Rosendahl, I.; Hoang Minh, Q.; Amelung, W., (2015). Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, trimethoprim, and enrofloxacin in the Mekong Delta, Vietnam. PLoS One, 10, e0131855.
Thu, T.A.; Rahman, M.; Coffin, S.; Harun-Or-Rashid, M.; Sakamoto, J.; Hung, N.V., (2012). Antibiotic use in Vietnamese hospitals: a multicenter point-prevalence study. American Journal of Infection Control, 40, 840-844. https://doi.org/10.1016/j.ajic.2011.10.020.
Nguyen, L.V.; Pham, L.T.T.; Bui, A.L.; Vi, M.T.; Nguyen, N.K.; Le, T.T.; Pham, S.T.; Nguyen, P.M.; Nguyen, T.H.; Taxis, K.; Nguyen, T.; Tran, H.D., (2021). Appropriate antibiotic use and associated factors in Vietnamese outpatients. Healthcare, 9, 693. https://doi.org/10.3390/healthcare9060693.
Hoàng, Đ.H.; Võ, V.C.; Vũ, T.L.; Đặng, T.V.H.; Phạm, V.H.; Trần, D.T.T., (2025). Nghiên cứu cộng đồng về một số yếu tố dịch tễ và hiểu biết của cha/mẹ khi sử dụng kháng sinh cho trẻ tại Thái Nguyên và Hà Giang năm 2020-2021. Tạp chí Khoa học và Công nghệ Nhiệt đới, 31, 109-117. https://doi.org/10.58334/vrtc.jtst.n31.11.
Du, L.; Liu, W., (2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: a review. Agronomy for Sustainable Development, 32, 309-327. https://doi.org/10.1007/s13593-011-0062-9.
Tran, H.; Son, D.; Lan Anh, N.; Anh, N.; Phong, T.; Hiramatsu, K., (2014). A simple and rapid method to measure residue of cefexime—a cephalosporin antibiotic in the wastewater of pharmaceutical production plant. Journal of Faculty of Agriculture, Kyushu University, 59, 169-175.
Thai, P.K.; Ky, L.X.; Binh, V.N.; Nhung, P.H.; Nhan, P.T.; Hieu, N.Q.; Dang, N.T.T.; Tam, N.K.B.; Anh, N.T.K., (2018). Occurrence of antibiotic residues and antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other sources around Hanoi, Vietnam. Science of the Total Environment, 645, 393-400.
Murata, A.; Takada, H.; Mutoh, K.; Hosoda, H.; Harada, A.; Nakada, N., (2011). Nationwide monitoring of selected antibiotics: distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Science of the Total Environment, 409, 5305-5312. https://doi.org/10.1016/j.scitotenv.2011.09.014.
Im, J.K.; Hwang, M.Y.; Lee, E.H.; Noh, H.R.; Yu, S.J., (2020). Pharmaceutical compounds in tributaries of the Han River watershed, South Korea. Environmental Research, 188, 109758. https://doi.org/10.1016/j.envres.2020.109758.
Angeles, L.F.; Islam, S.; Aldstadt, J.; Saqeeb, K.N.; Alam, M.; Khan, M.A.; Johura, F.T.; Ahmed, S.I.; Aga, D.S., (2020). Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. Science of the Total Environment, 712, 136285.
Voigt, A.M.; Ciorba, P.; Döhla, M.; Exner, M.; Felder, C.; Lenz-Plet, F.; Sib, E.; Skutlarek, D.; Schmithausen, R.M.; Faerber, H.A., (2020). The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. International Journal of Hygiene and Environmental Health, 224, 113449. https://doi.org/10.1016/j.ijheh.2020.113449.
Mariano, S.M.F.; Angeles, L.F.; Aga, D.S.; Villanoy, C.L.; Jaraula, C.M.B., (2023). Emerging pharmaceutical contaminants in key aquatic environments of the Philippines. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1124313.
Duong, H.A.; Phung, T.V.; Nguyen, T.N.; Phan Thi, L.-A.; Pham, H.V., (2021). Occurrence, distribution, and ecological risk assessment of antibiotics in selected urban lakes of Hanoi, Vietnam. Journal of Analytical Methods in Chemistry, 2021, 1-13. https://doi.org/10.1155/2021/6631797.
Da Le, N.; Hoang, A.Q.; Hoang, T.T.H.; Nguyen, T.A.H.; Duong, T.T.; Pham, T.M.H.; Nguyen, T.D.; Hoang, V.C.; Phung, T.X.B.; Le, H.T.; Tran, C.S.; Dang, T.H.; Vu, N.T.; Nguyen, T.N.; Le, T.P.Q., (2021). Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): concentrations, profiles, source estimation, and risk assessment. Environmental Science and Pollution Research, 28, 10622-10632. https://doi.org/10.1007/s11356-020-11329-3.
Le, N.D.; Dinh, T.T.H.; Vu, T.H.; Le, P.T.; Nguyen, T.M.H.; Hoang, T.T.H.; Rochelle-Newall, E.; Phung, T.X.B.; Duong, T.T.; Luu, T.H.T.; Kieu, T.L.P.; Nguyen, T.A.H.; Nguyen, T.D.; Le, T.P.Q., (2024). Occurrence and ecological risks of antibiotics and antiparasitics in surface water in urban lakes in Hanoi city, Vietnam. Environmental Science and Pollution Research, 32, 1447-1465. https://doi.org/10.1007/s11356-024-35726-0.
Harada, K., (2018). Antibiotic residue in environmental water in Vietnam. Yakugaku Zasshi, 138, 271-275.
Thanh Yên, P.T.; Trung, N.Q.; Hải, H.T., (2016). Đánh giá sự xuất hiện và rủi ro tiềm năng của các kháng sinh quinonoles, sulfonamides và trimethoprim đối với môi trường nước và trầm tích của Hồ Tây và hồ Trúc Bạch. Vietnam Journal of Chemistry, 54, 620. https://vjs.ac.vn/vjchem/article/view/0866-7144.2016-00375.
Prado, N.; Ochoa, J.; Amrane, A., (2009). Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system. Process Biochemistry, 44, 1302-1306. https://doi.org/10.1016/j.procbio.2009.08.006.
Peng, J.; Wang, X.; Yin, F.; Xu, G., (2019). Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. Science of the Total Environment, 650, 2437-2445. https://doi.org/10.1016/j.scitotenv.2018.10.004.
Wang, L.; Qiang, Z.; Li, Y.; Ben, W., (2017). An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristics. Journal of Environmental Sciences, 56, 263-271. https://doi.org/10.1016/j.jes.2016.10.006.
Xu, Z.; Song, X.; Li, Y.; Li, G.; Luo, W., (2019). Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. Science of the Total Environment, 684, 23-30. https://doi.org/10.1016/j.scitotenv.2019.05.241.
Yu, Z.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Deng, L.; Li, Y.; Guo, J., (2018). Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system. Bioresource Technology, 268, 599-607. https://doi.org/10.1016/j.biortech.2018.08.028.
Nguyen Van, T.; Kim Anh, B.T.; Thu Thuy, N.T.; Hong Yen, N.; Hong Chuyen, N.; Dinh Kim, D., (2024). Study filter materials for vertical subsurface flow constructed wetland to treat wastewater from the Da Mai noodle handicraft village in Bac Giang Province. VNU Journal of Science: Earth and Environmental Sciences, 40. https://doi.org/10.25073/2588-1094/vnuees.5078.
Anh, B.T.K.; Thanh, V.N.; Chuyen, N.H.; Phuong, M.N.; Kim, D.D., (2020). Treatment efficiency of piggery wastewater by surface and horizontal subsurface flow constructed wetlands. Vietnam Journal of Science and Technology, 58, 84-92.
Van Thanh, N.; Anh, B.T.K.; Phuong, N.M.; Ha, N.T.H.; Hang, N.T.A.; Mai, N.T.; Binh, N.T.; Cong, L.T.N.; Thuy, P.T.; Toan, V.N., (2025). Insights of a medium-scale hybrid constructed wetland system operation for swine wastewater in Northern Vietnam: influence of tropical monsoon climate and operational duration. Ecological Engineering, 221, 107772. https://doi.org/10.1016/j.ecoleng.2025.107772.
Liu, L.; Liu, Y.-H.; Liu, C.-X.; Wang, Z.; Dong, J.; Zhu, G.-F.; Huang, X., (2013). Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecological Engineering, 53, 138-143. https://doi.org/10.1016/j.ecoleng.2012.12.033.
Liu, L.; Liu, Y.-H.; Wang, Z.; Liu, C.-X.; Huang, X.; Zhu, G.-F., (2014). Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands. Journal of Hazardous Materials, 278, 304-310. https://doi.org/10.1016/j.jhazmat.2014.06.015.
Lima, D.R.; Lima, E.C.; Umpierres, C.S.; Thue, P.S.; El-Chaghaby, G.A.; Da Silva, R.S.; Pavan, F.A.; Dias, S.L.P.; Biron, C., (2019). Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para. Environmental Science and Pollution Research, 26, 16396-16408. https://doi.org/10.1007/s11356-019-04994-6.
Kosutic, K.; Dolar, D.; Asperger, D.; Kunst, B., (2007). Removal of antibiotics from a model wastewater by RO/NF membranes. Separation and Purification Technology, 53, 244-249. https://doi.org/10.1016/j.seppur.2006.07.015.
Krall, A.L.; Elliott, S.M.; Erickson, M.L.; Adams, B.A., (2018). Detecting sulfamethoxazole and carbamazepine in groundwater: is ELISA a reliable screening tool? Environmental Pollution, 234, 420-428. https://doi.org/10.1016/j.envpol.2017.11.065.
Khosravi, M.J.; Hosseini, S.M.; Vatanpour, V., (2022). Performance improvement of PES membrane decorated by Mil-125(Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal. Chemosphere, 290, 133335. https://doi.org/10.1016/j.chemosphere.2021.133335.
Arefi-Oskoui, S.; Khataee, A.; Jabbarvand Behrouz, S.; Vatanpour, V.; Haddadi Gharamaleki, S.; Orooji, Y.; Safarpour, M., (2022). Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Separation and Purification Technology, 280, 119822. https://doi.org/10.1016/j.seppur.2021.119822.
Serna-Galvis, E.A.; Jojoa-Sierra, S.D.; Berrio-Perlaza, K.E.; Ferraro, F.; Torres-Palma, R.A., (2017). Structure-reactivity relationship in the degradation of three representative fluoroquinolone antibiotics in water by electrogenerated active chlorine. Chemical Engineering Journal, 315, 552-561. https://doi.org/10.1016/j.cej.2017.01.062.
Ma, Y.; Gao, N.; Li, C., (2012). Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate. Environmental Engineering Science, 29, 357-362. https://doi.org/10.1089/ees.2010.0475.
Zhou, Z.; Jiang, J.-Q., (2015). Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere, 119, S95-S100. https://doi.org/10.1016/j.chemosphere.2014.04.006.
Qi, Y.; Mei, Y.; Li, J.; Yao, T.; Yang, Y.; Jia, W.; Tong, X.; Wu, J.; Xin, B., (2019). Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chemical Engineering Journal, 373, 1158-1167. https://doi.org/10.1016/j.cej.2019.05.097.
Ouyang, Q.; Kou, F.; Tsang, P.E.; Lian, J.; Xian, J.; Fang, J.; Fang, Z., (2019). Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin. Journal of Cleaner Production, 232, 1492-1498. https://doi.org/10.1016/j.jclepro.2019.06.043.
Nasseh, N.; Taghavi, L.; Barikbin, B.; Nasseri, M.A.; Allahresani, A., (2019). FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous fenton-like catalyst for the oxidation of metronidazole in neutral environments: adsorption and degradation studies. Composites Part B: Engineering, 166, 328-340. https://doi.org/10.1016/j.compositesb.2018.11.112.
Feng, M.; Yan, L.; Zhang, X.; Sun, P.; Yang, S.; Wang, L.; Wang, Z., (2016). Fast removal of the antibiotic flumequine from aqueous solution by ozonation: influencing factors, reaction pathways, and toxicity evaluation. Science of the Total Environment, 541, 167-175. https://doi.org/10.1016/j.scitotenv.2015.09.048.
Kanakaraju, D.; Glass, B.D.; Oelgemöller, M., (2014). Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environmental Chemistry Letters, 12, 27-47. https://doi.org/10.1007/s10311-013-0428-0.
Chen, G.; Yu, Y.; Liang, L.; Duan, X.; Li, R.; Lu, X.; Yan, B.; Li, N.; Wang, S., (2021). Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: a critical review. Journal of Hazardous Materials, 408, 124461. https://doi.org/10.1016/j.jhazmat.2020.124461.
Kitazono, Y.; Ihara, I.; Toyoda, K.; Umetsu, K., (2017). Antibiotic removal from waste milk by electrochemical process: degradation characteristics in concentrated organic solution. Journal of Material Cycles and Waste Management, 19, 1261-1269. https://doi.org/10.1007/s10163-016-0517-9.
El-Ghenymy, A.; Rodríguez, R.M.; Arias, C.; Centellas, F.; Garrido, J.A.; Cabot, P.L.; Brillas, E., (2013). Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an air-diffusion cathode. Journal of Electroanalytical Chemistry, 701, 7-13. https://doi.org/10.1016/j.jelechem.2013.04.027.
Li, F.; Lan, X.; Shi, J.; Wang, L., (2021). Loofah sponge as an environment-friendly biocarrier for intimately coupled photocatalysis and biodegradation (ICPB). Journal of Water Process Engineering, 40, 101965. https://doi.org/10.1016/j.jwpe.2021.101965.
Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Alexander, J.; Schwartz, T.; Fatta-Kassinos, D., (2017). Investigation of the potential of a membrane bioreactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants. Chemical Engineering Journal, 310, 491-502. https://doi.org/10.1016/j.cej.2016.04.113.
Xiao, Y.; Yaohari, H.; De Araujo, C.; Sze, C.C.; Stuckey, D.C., (2017). Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chemical Engineering Journal, 321, 335-345. https://doi.org/10.1016/j.cej.2017.03.118.
Tran, T.T.P.; Dinh, M.N.T.; Pham, T.Y.N.; Nguyen, V.N.M.; Nguyen, T.T.B.; Le, T.C.N.; Cao, V.H.; Nguyen, T.D.C., (2021). Synthesis of WO3/Ag3VO4 photocatalyst applying for the treatment of amoxicillin antibiotics under visible light. Vietnam Journal of Science and Technology, 63, 75-79. https://doi.org/10.31276/VJST.63(11DB).75-79.
Binh, N.T.; Kim Anh, B.T.; Thanh, N.V.; Kim, D.D.; Phuong, N.M., (2023). The influence of pollutants on plant growth and treatment efficiency of horizontally-constructed wetlands. Vietnam Journal of Science and Technology, 65, 42-46. https://doi.org/10.31276/VJSTE.65(2).42-46.
Nguyen Tuan, D.; Nguyen Van, T.; Bui Thi Kim, A., (2022). Research and assess the potential of plants: umbrella sedge, water spinach and taro in wastewater treatment for Da Mai noodle handicraft village, Bac Giang. Journal of Science on Natural Resources and Environment, 108-112. https://tapchi.hunre.edu.vn/index.php/tapchikhtnmt/article/view/466.
Anh, B.T.K.; Thanh, N.V.; Phuong, N.M.; Ha, N.T.H.; Duong, N.T.; Kim, D.D.; Yen, N.H.; Chuyen, N.H., (2024). Selection of suitable filter materials for subsurface flow constructed wetland systems for wastewater treatment in rice noodle handicraft village. Vietnam Journal of Science and Technology. https://doi.org/10.15625/2525-2518/21065.
SUBMITTED: 24 September 2025
ACCEPTED: 30 October 2025
PUBLISHED:
4 November 2025
SUBMITTED to ACCEPTED: 36 days
DOI:
https://doi.org/10.53623/sein.v3i1.840