This work focused on microbial bioremediation as a sustainable approach for improving soil and water quality affected by heavy metals, hydrocarbons, and other recalcitrant pollutants. The primary goal was to assess the efficacy of microbial consortia compared with single strains and to investigate ecological resilience and system-level dynamics that enabled long-term remediation. Unlike conventional physical or chemical treatments, microbial systems generated synergies of metabolic processes and ecological interactions that enhanced pollutant degradation. This review integrated recent advances in genomics, systems modeling, and ecological monitoring, and demonstrated how these tools were applied in biostimulation and bioaugmentation strategies. The novelty of this work lay in combining fine-grained microbial processes with system-level resilience thinking, providing new insights into the scalability and sustainability of bioremediation. While microbial systems were highly promising, challenges remained, including incomplete degradation, site heterogeneity, and biosafety concerns. The paper concluded with recommendations for the robust design of microbial consortia, the development of predictive ecological models, and the improvement of policy frameworks to ensure safe, equitable, and long-term adoption of microbial bioremediation.
Liu, L.; Li, W.; Song, W.; Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment, 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161.
Gunjal, A.; Gupta, S.; Nweze, J.E.; Nweze, J.A. (2023). Metagenomics in bioremediation: Recent advances, challenges, and perspectives. In Metagenomics to Bioremediation: Applications, Cutting Edge Tools, and Future Outlook, Developments in Applied Microbiology and Biotechnology, 81–102. https://doi.org/10.1016/B978-0-323-96113-4.00018-4.
Adams, G.O.; Fufeyin, P.T.; Okoro, S.E.; Ehinomen, I. (2015). Bioremediation, biostimulation, and bioaugmentation: A review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28–39. https://doi.org/10.12691/ijebb-3-1-5.
Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco-friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154–171. https://doi.org/10.1016/j.wmb.2024.07.005.
Du, H.; Pan, J.; Zou, D.; Huang, Y.; Liu, Y.; Li, M. (2022). Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. Microbiome, 10, 224. https://doi.org/10.1186/s40168-022-01272-3.
Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. (2022). Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in Microbiology, 13, 824084. https://doi.org/10.3389/fmicb.2022.824084.
Das, N.; Kumar, V.; Chaure, K.; Pandey, P. (2025). Environmental restoration of polyaromatic hydrocarbon-contaminated soil through sustainable rhizoremediation: Insights into bioeconomy and high-throughput systematic analysis. Environmental Science Advances, 4(6), 842–883. https://doi.org/10.1039/d4va00203b
Zhang, C.; Zhao, X.; Liang, A.; Li, Y.; Song, Q.; Li, X.; Li, D.; Hou, N. (2023). Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: Emphasizing the driving role of core microbial communities and nutrient cycling. Environmental Research, 228, 115895. https://doi.org/10.1016/j.envres.2023.115895.
Liu, J.J.W.; Reed, M.J.; Fung, K. (2020). Advancements to the multi-system model of resilience: updates from empirical evidence. Heliyon, 6(9), e04831. https://doi.org/10.1016/j.heliyon.2020.e04831.
Shen, Z.; Tian, Y.; Yao, Y.; Jiang, W.; Dong, J.; Huang, X.; Wu, X.; Farooq, T.H.; Yan, W. (2023). Ecological restoration research progress and prospects: A bibliometric analysis. Ecological Indicators, 155, 110968. https://doi.org/10.1016/j.ecolind.2023.110968.
Atashgahi, S.; Oosterkamp, M.J.; Peng, P.; Frank, J.; Kraft, B.; Hornung, B.; Schleheck, D.; Lücker, S.; Jetten, M.S.M.; Stams, A.J.M.; Smidt, H. (2021). Proteogenomic analysis of Georgfuchsia toluolica revealed unexpected concurrent aerobic and anaerobic toluene degradation. Environmental Microbiology Reports, 13(1), 1758–2229. https://doi.org/10.1111/1758-2229.12996.
Walker, B.; Salt, D. (2020). Resilience practice: Building capacity to absorb disturbance and maintain function. Island Press: Washington, DC, United States.
Philippot, L.; Griffiths, B.S.; Langenheder, S. (2021). Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews, 85(2), e00026-20. https://doi.org/10.1128/MMBR.00026-20.
Latour, B. (2020). Down to Earth: Politics in the New Climatic Regime. Polity Press: London, UK.
Maglione, G.; Zinno, P.; Tropea, A.; Mussagy, C.U.; Dufossé, L.; Giuffrida, D.; Mondello, A. (2024). Microbes' role in environmental pollution and remediation: A bioeconomy focus approach. Microbiology, 10(3), 723–755. https://doi.org/10.3934/microbiol.2024033.
Kumar, M.; Bolan, N.S.; Hoang, S.A.; Sawarkar, A.D.; Jasemizad, T.; Gao, B.; Keerthanan, S.; Padhye, L.P.; Singh, L.; Kumar, S.; Vithanage, M.; Li, Y.; Zhang, M.; Kirkham, M.B.; Vinu, A.; Rinklebe, J. (2021). Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? Journal of Hazardous Materials, 420, 126534. https://doi.org/10.1016/j.jhazmat.2021.126534 .
Choi, S.; Ilyas, S.; Hwang, G.; Kim, H. (2021). Sustainable treatment of bimetallic (Ag–Pd/α-Al₂O₃) catalyst waste from naphtha cracking process: An innovative waste-to-value recycling of precious metals. Journal of Environmental Management, 291, 112748. https://doi.org/10.1016/j.jenvman.2021.112748.
Hidayatullah, K.; Manopo, J.; Supu, I.; Hadju, A.; Ofiyen, C.; Mahardhika, M.K.; Darma, Y. (2025). Enhancing hydrogen evolution reaction via photoelectrochemical water splitting: A review on recent strategies of metal oxide-based photoanode materials. Inorganic Chemistry Frontiers, 179(2), 114885. https://doi.org/10.1016/j.inoche.2025.114885.
Bilal, M.; Iqbal, H.M.N. (2020). Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. Cleaner and Sustainable Consumption, 2, 100011. https://doi.org/10.1016/j.cscee.2020.100011.
Govarthanan, M.; Jeon, C.-H.; Jeon, Y.-H.; Kwon, J.-H.; Bae, H.; Kim, W. (2020). Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles. International Journal of Biological Macromolecules, 162, 1241–1249. https://doi.org/10.1016/j.ijbiomac.2020.06.227.
Leong, Y.K.; Chang, J.-S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology, 303, 122886. https://doi.org/10.1016/j.biortech.2020.122886 .
Mahanty, S.; Chatterjee, S.; Ghosh, S.; Tudu, P.; Gaine, T.; Bakshi, M.; Das, S.; Das, P.; Bhattacharyya, S.; Bandyopadhyay, S.; Chaudhuri, P. (2020). Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: Biofabrication, adsorptive dynamics and chemometric modeling study. Journal of Water Process Engineering, 37, 101426. https://doi.org/10.1016/j.jwpe.2020.101426.
Malini, S.; Vignesh Kumar, S.; Hariharan, R.; Pon Bharathi, A.; Renuka Devi, P.; Hemananthan, E. (2020). Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Materials Today: Proceedings, 21(1), 828–832. https://doi.org/10.1016/j.matpr.2019.07.587.
Noman, M.; Shahid, M.; Ahmed, T.; Niazi, M.B.K.; Hussain, S.; Song, F.; Manzoor, I. (2019). Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environmental Pollution, 259, 113514. https://doi.org/10.1016/j.envpol.2019.113514.
Pulingam, T.; Thong, K.L.; Appaturi, J.N.; Lai, C.W.; Leo, B.F. (2021). Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. Chemosphere, 281, 130739. https://doi.org/10.1016/j.chemosphere.2021.130739.
Li, Z.; Xie, Y.; Zeng, Y.; Zhang, Z.; Song, Y.; Hong, Z.; Ma, L.; He, M.; Ma, H.; Cui, F. (2021). Plastic leachates lead to long-term toxicity in fungi and promote biodegradation of heterocyclic dye. Science of the Total Environment, 806 (Pt 1), 150538. https://doi.org/10.1016/j.scitotenv.2021.150538.
Rathod, S.D.; Rathod, S.; Preetam, S.; Pandey, C.; Bera, S.P. (2024). Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment. Biotechnology Reports, 41, e00830. https://doi.org/10.1016/j.btre.2024.e00830.
SUBMITTED: 30 July 2025
ACCEPTED: 31 August 2025
PUBLISHED:
5 September 2025
SUBMITTED to ACCEPTED: 33 days
DOI:
https://doi.org/10.53623/sein.v2i2.791