Phorboxazole A is a tropical marine macrolide isolated from the sponge Phorbas sp. and has emerged as one of the most potent cytostatic agents found in nature, with nanomolar activity against diverse cancer cell lines and antifungal properties against pathogens like Candida albicans. The structural complexity of Phorboxazole A, characterized by a 46-carbon skeleton, 28 stereocenters, two oxazole rings, and a macrocyclic core, has spurred innovative synthetic campaigns since its isolation 30 years ago. This review article highlights the approaches in total synthesis strategies for phorboxazole A, emphasizing the Petasis-Ferrier union/rearrangement, tri-component coupling, convergent assembly, stereoselective cyclization, and comparative retrosynthetic analysis, followed by discussions regarding its biological activity, and the feasibility of utilizing green chemistry principles in mitigating the hazardous effects on human health and the environment.
Vannuffel, P.; Cocito, C. (1996). Mechanism of action of streptogramins and macrolides. Drugs, 51, 20–30. https://doi.org/10.2165/00003495-199600511-00006.
Van Bambeke, F.; Tulkens, P.M. (2001). Macrolides: pharmacokinetics and pharmacodynamics. International Journal of Antimicrobial Agents, 18, 17–23. https://doi.org/10.1016/S0924-8579(01)00406-X.
Retsema, J.; Fu, W. (2001). Macrolides: structures and microbial targets. International Journal of Antimicrobial Agents, 18, 3–10. https://doi.org/10.1016/S0924-8579(01)00401-0.
Mazzei, T.; Mini, E.; Novelli, A.; Periti, P. (1993). Chemistry and mode of action of macrolides. Journal of Antimicrobial Chemotherapy, 31, 1–9. https://doi.org/10.1093/JAC/31.SUPPL_C.1.
Searle, P.A.; Molinski, T.F. (1995). Phorboxazoles A and B: Potent Cytostatic Macrolides from Marine Sponge Phorbas Sp. Journal of the American Chemical Society, 117, 8126–8131. https://doi.org/10.1021/JA00136A009.
Kulkarni, S.; Kaur, K.; Jaitak, V. (2021). Recent Developments in Oxazole Derivatives as Anticancer Agents: Review on Synthetic Strategies, Mechanism of Action and SAR Studies. Anti-Cancer Agents in Medicinal Chemistry, 22, 1859–1882. https://doi.org/10.2174/1871520621666210915095421.
Li, S.; Mei, Y.; Jiang, L.; et al. (2025). Oxazole and isoxazole-containing pharmaceuticals: targets, pharmacological activities, and their SAR studies. RSC Medicinal Chemistry, 16, 1879-1890. https://doi.org/10.1039/D4MD00777H.
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. (2018). Recent advance in oxazole-based medicinal chemistry. European Journal of Medicinal Chemistry, 144, 444–492. https://doi.org/10.1016/J.EJMECH.2017.12.044.
Smith, A.B.; Hogan, A.M.L.; Liu, Z.; et al. (2011). Phorboxazole synthetic studies: design, synthesis and biological evaluation of phorboxazole A and hemi-phorboxazole A related analogues. Tetrahedron, 67, 5069–5078. https://doi.org/10.1016/J.TET.2010.12.043.
Searle, P.A.; Molinski, T.F.; Brzezinski, L.J.; Leahy, J.W. (1996). Absolute configuration of phorboxazoles A and B from the marine sponge Phorbas sp. 1. Macrolide and hemiketal rings. Journal of the American Chemical Society, 118, 9422–9423. https://doi.org/10.1021/JA962092R.
Limas, J.C.; Cook, J.G. (2019). Preparation for DNA Replication: The Key to a Successful S phase. FEBS Letters, 593, 2853. https://doi.org/10.1002/1873-3468.13619.
Nasheuer, H.P.; Meaney, A.M. (2024). Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes, 15, 360. https://doi.org/10.3390/GENES15030360.
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. (2021). Cell cycle control in cancer. Nature Reviews Molecular Cell Biology, 23, 74–88. https://doi.org/10.1038/s41580-021-00404-3.
Li, S.; Wang, L; Wang, Y.; et al. (2022). The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. Journal of Hematology & Oncology, 15, 1–32. https://doi.org/10.1186/S13045-022-01360-X.
Bhowmick, R.; Hickson, I.D.; Liu, Y. (2023). Completing genome replication outside of S phase. Molecular Cell, 83, 3596–3607. https://doi.org/10.1016/J.MOLCEL.2023.08.023.
Smith, A.B.; Liu, Z.; Hogan, A.M.L., et al. (2009). Hemi-phorboxazole A: Structure confirmation, analogue design and biological evaluation. Organic Letters, 11, 3766–3769. https://doi.org/10.1021/OL9014317.
Williams, D.R.; Kiryanov, A.A.; Emde, U.; et al. (2004). Studies of stereocontrolled allylation reactions for the total synthesis of phorboxazole A. Proceedings of the National Academy of Sciences of the United States of America, 101, 12058–12063. https://doi.org/10.1073/PNAS.0402477101.
Shultz, Z.; Leahy, J.W. (2016). Synthesis of the phorboxazoles—potent, architecturally novel marine natural products. The Journal of Antibiotics, 69, 220–252. https://doi.org/10.1038/ja.2016.8.
Smith, A.B.; Razler, T.M.; Meis, R.M.; Pettit, G.R. (2008). Synthesis and biological evaluation of phorboxazole congeners leading to the discovery and preparative-scale synthesis of (+)-chlorophorboxazole A possessing picomolar human solid tumor cell growth inhibitory activity. Journal of Organic Chemistry, 73 1201–1208. https://doi.org/10.1021/JO701816H.
do Amaral, B.S.; da Silva. F.B.; Leme, G.M.; et al. (2021). Integrated analytical workflow for chromatographic profiling and metabolite annotation of a cytotoxic Phorbas amaranthus extract. Journal of Chromatography B, 1174, 122720. https://doi.org/10.1016/J.JCHROMB.2021.122720.
Caso, A.; da Silva, F.B.; Esposito, G.; et al. (2021). Exploring Chemical Diversity of Phorbas Sponges as a Source of Novel Lead Compounds in Drug Discovery. Marine Drugs, 19, 667. https://doi.org/10.3390/MD19120667.
Smith, A.B.; Minbiole, K.P.; Verhoest, P.R.; Schelhaas, M. (2001). Total synthesis of (+)-phorboxazole A exploiting the Petasis-Ferrier rearrangement. Journal of the American Chemical Society, 123, 10942–10953. https://doi.org/10.1021/JA011604L.
Williams, D.R.; Kiryanov, A.A.; Emde, U.; et al. (2003). Total Synthesis of Phorboxazole A. Angewandte Chemie International Edition, 42, 1258–1262. https://doi.org/10.1002/ANIE.200390322.
Forsyth, C.J.; Ahmed, F.; Cink, R.D.; Lee, C.S. (1998). Total synthesis of phorboxazole A. J Am Chem Soc 120:5597–5598. https://doi.org/10.1021/JA980621G.
Evans, D.A.; Fitch, D.M.; Smith, T.E.; Cee, V.J. (2000) Application of complex aldol reactions to the total synthesis of phorboxazole B. Journal of the American Chemical Society, 122, 10033–10046. https://doi.org/10.1021/JA002356G.
Desriac, F.; Jégou, C.; Balnois, E.; et al. (2013). Antimicrobial Peptides from Marine Proteobacteria. Marine Drugs, 11,3632–3660. https://doi.org/10.3390/MD11103632.
Mizuno, C.M.; Kimes, N.E.; López-Pérez, M.; et al. (2013). A Hybrid NRPS-PKS Gene Cluster Related to the Bleomycin Family of Antitumor Antibiotics in Alteromonas macleodii Strains. PLoS One, 8, e76021. https://doi.org/10.1371/JOURNAL.PONE.0076021.
Zhu, P.; Zheng, Y.; You, Y.; et al. (2009). Sequencing and modular analysis of the hybrid non-ribosomal peptide synthase – polyketide synthase gene cluster from the marine sponge Hymeniacidon perleve-associated bacterium Pseudoalteromonas sp. strain NJ631. Canadian Journal of Microbiology, 55, 219–227. https://doi.org/10.1139/W08-125.
Motoyoshiya, J.; Kusaura, T.; Kokin, K.; et al. (2001). The Horner–Wadsworth–Emmons reaction of mixed phosphonoacetates and aromatic aldehydes: geometrical selectivity and computational investigation. Tetrahedron, 57, 1715–1721. https://doi.org/10.1016/S0040-4020(01)00007-2.
Trippett, S. (1963). The Wittig reaction. Quarterly Reviews, Chemical Society, 17, 406–440. https://doi.org/10.1039/QR9631700406.
Lao, Z.; Toy, P.H. (2016). Catalytic Wittig and aza-Wittig reactions. Beilstein Journal of Organic Chemistry, 12, 253 12:2577–2587. https://doi.org/10.3762/BJOC.12.253.
Byrne, P.A.; Gilheany, D.G. (2013). The modern interpretation of the Wittig reaction mechanism. Chemical Society Reviews, 42, 6670–6696. https://doi.org/10.1039/C3CS60105F.
Maercker, A. (2011). The Wittig Reaction. Organic Reactions, 270–490. https://doi.org/10.1002/0471264180.OR014.03.
Minbiole, E.C.; Minbiole, K.P.C. (2016). The Petasis-Ferrier rearrangement: developments and applications. The Journal of Antibiotics, 69, 213–219. https://doi.org/10.1038/ja.2015.136.
Ferrier, R.J. (1979). Unsaturated carbohydrates. Part 21. A carbocyclic ring closure of a hex-5-enopyranoside derivative. Journal of the Chemical Society, Perkin Transactions 1, 1455–1458. https://doi.org/10.1039/P19790001455.
Ilia, G.; Simulescu, V.; Plesu, N; Chiriac, V.; Merghes, P. (2023). Wittig and Wittig–Horner Reactions under Sonication Conditions. Molecules, 28, 1958. https://doi.org/10.3390/MOLECULES28041958.
Plesniak, K.; Zarecki, A.; Wicha, J. (2006). The Smiles Rearrangement and the Julia–Kocienski Olefination Reaction. Topics in Current Chemistry, 275, 163–250. https://doi.org/10.1007/128_049.
Mirk, D.; Grassot, J.M.; Zhu, J. (2006). Synthesis of 4-nitrophenyl sulfones and application in the modified Julia olefination. Synlett, 2006, 1255–1259. https://doi.org/10.1055/S-2006-939682.
Chrenko, D.; Pospíšil, J. (2024). Latest Developments of the Julia–Kocienski Olefination Reaction: Mechanistic Considerations. Molecules, 29, 2719. https://doi.org/10.3390/molecules29122719.
Blakemore, P.R. (2002). The modified Julia olefination: alkene synthesis via the condensation of metallated heteroarylalkylsulfones with carbonyl compounds. Journal of the Chemical Society, Perkin Transactions 1, 2, 2563–2585. https://doi.org/10.1039/B208078H.
Wang, B.; Hansen, T.M.; Wang, T.; et al. (2011). Total synthesis of phorboxazole A via de novo oxazole formation: Strategy and component assembly. J Am Chem Soc 133:1484–1505. https://doi.org/10.1021/JA108906E.
Smith, A.B.; Razler, T.M.; Ciavarri, J.P.; et al. (2008). A second-generation total synthesis of (+)-phorboxazole A. Journal of Organic Chemistry, 73, 1192–1200. https://doi.org/10.1021/JO7018152.
Wang, B.; Hansen, T.M.; Weyer, L.; et al. (2011). Total synthesis of phorboxazole a via de novo oxazole formation: Convergent total synthesis. Journal of the American Chemical Society, 133, 1506–1516. https://doi.org/10.1021/JA1089099.
Forsyth, C.J.; Ying, L.; Chen, J.; La Clair, J.J. (2006). Phorboxazole analogues induce association of cdk4 with extranuclear cytokeratin intermediate filaments. Journal of the American Chemical Society, 128, 3858–3859. https://doi.org/10.1021/JA057087E.
Donia, M.; Hamann, M.T. (2003). Marine natural products and their potential applications as anti-infective agents. Lancet Infectious Diseases, 3, 338–348. https://doi.org/10.1016/S1473-3099(03)00655-8.
Terada, M. (2010). Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. Synthesis, 12, 1929–1982. https://doi.org/10.1055/s-0029-1218801.
Nair, V.V.; Arunprasath, D.; Pandidurai, S.; Sekar, G. (2022). Synergistic Dual Amine/Transition Metal Catalysis: Recent Advances. European Journal of Organic Chemistry, 23, e202200244. https://doi.org/10.1002/ejoc.202200244.
Wang, Y.; Du, D. (2020). Recent advances in organocatalytic asymmetric oxa-Michael addition triggered cascade reactions. Organic Chemistry Frontiers, 7, 3266–3283. https://doi.org/10.1039/D0QO00631A.
Yorimitsu, H.; Kotora, M.; Patil, N.T. (2021). Special Issue: Recent Advances in Transition-Metal Catalysis. The Chemical Record, 21, 3335–3337. https://doi.org/10.1002/tcr.202100305.
Hie, L.; Chang, J.J.; Garg, N.K. (2014). Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 92, 571–574. https://doi.org/10.1021/ed500158p.
Noor, R.; Zahoor, A.F.; Irfan, M,; et al. (2022). Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. Molecules, 27, 5654. https://doi.org/10.3390/molecules27175654.
Blakemore, D. (2016). Suzuki–Miyaura Coupling. In Synthetic Methods in Drug Discovery, Vol. 1.; Blakemore, D.C.; Doyle, P.M.; Fobian, Y.M.; et al. Royal Society of Chemistry: London, UK,; 1–69. https://doi.org/10.1039/9781782622086.
Li, M.; Tsui, G.V. (2023). Stereoselective Palladium-Catalyzed Hiyama Cross-Coupling Reaction of Tetrasubstituted gem-Difluoroalkenes. Organic Letters, 26, 376–379. https://doi.org/10.1021/acs.orglett.3c04037.
Rahman, R.; Malik, F.; Hein, Z.M.; et al. (2024). Continuous Flow Synthesis and Applications of Metal-Organic Frameworks: Advances and Innovation. ChemPlusChem, 90, e202400634. https://doi.org/10.1002/cplu.202400634.
SUBMITTED: 28 July 2025
ACCEPTED: 31 August 2025
PUBLISHED:
3 September 2025
SUBMITTED to ACCEPTED: 35 days
DOI:
https://doi.org/10.53623/sein.v2i2.789