Skip to main content

Environmental Remediation Applications of Nanocomposites on Water Pollution

Author(s): Sam Wil Son 1 , Muhammad Noor Hazwan Jusoh 1 ORCID https://orcid.org/0000-0001-5868-6779 , Umi Kalthsom Parjo 2 , Syahrun Neizam Mohd Dzulkifli 3 ORCID https://orcid.org/0000-0001-6492-9925
Author(s) information:
1 Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia.
2 SMK Tengku Mahkota, Jalan Temenggong Ahmad, Kampung Parit Besar, 84000 Muar, Johor Darul Ta'zim, Malaysia.
3 Department of Chemical Engineering Technology, Faculty of Engineering Technology, Univerisiti Tun Hussein Onn Malaysia.

Corresponding author

Economic growth was followed by industrialization and population expansion, which led to an increased demand for goods, energy, food, and water. While this contributed to rapid global development, it also severely polluted the Earth, especially the air, water, and soil. Water pollution, in particular, is critical, as water is essential for both human and animal life. However, the discharge of industrial waste, effluents, agricultural runoff, and untreated sewage into water bodies has become a widespread issue, leading to serious health consequences for humans and damage to ecosystems. To address this problem, the use of nanocomposites has emerged as a promising solution for the remediation of harmful substances and the restoration of natural environments. This new-age technology employs a variety of nanocomposite materials designed to target different stages of water pollution. These include electrospun nanofibrous membranes for the removal of heavy metals, nanocomposite membranes for wastewater filtration, polymer-based nanocomposites that degrade water pollutants and inhibit microbial growth, natural nanocomposites derived from reusable materials with minimal environmental impact, and magnetic nanocomposites for water purification. Due to their high efficiency, cost-effectiveness, environmental compatibility, and adaptability, these materials have the potential to serve as sustainable third-generation water treatment technologies. Thus, the general application of nanocomposites in environmental protection and the decontamination of water pollutants, with respect to their sources, fate, and effects on human health, is increasingly being explored and reviewed.

Water pollution: sources, effects, control and management. (accessed on 15 February 2025) Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-0c6457fb-fa78-4aa1-9eca-5f4483681a90.

Fn, C.; Mf, M. (2017). Factors affecting water pollution: a review. Journal of Ecosystem & Ecography, 7(1). https://doi.org/10.4172/2157-7625.1000225.

Ravindiran, G.; Rajamanickam, S.; Sivarethinamohan, S.; Karupaiya Sathaiah, B.; Ravindran, G.; Muniasamy, S.K.; Hayder, G. (2023). A Review of the Status, Effects, Prevention, and Remediation of Groundwater Contamination for Sustainable Environment. Water, 15, 3662. https://doi.org/10.3390/w15203662.

Careers in Environmental Remediation: US Bureau of Labor Statistics. (accessed on 15 February 2025) Available online: https://www.bls.gov/green/environmental_remediation/remediation.htm.

Neitzel, I.; Mochalin, V.; Gogotsi, Y. (2012). Advances in surface chemistry of nanodiamond and Nanodiamond–Polymer composites. Elsevier eBooks, pp. 421–456. https://doi.org/10.1016/b978-1-4377-3465-2.00013-x.

De Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research-Ibero-American Journal of Materials, 12(1), 1–39. https://doi.org/10.1590/s1516-14392009000100002.

Mohamed, R.R. (2022). Applications of nanocomposites in environmental remediation. Springer eBooks, pp. 453–471. https://doi.org/10.1007/978-3-030-94319-6_15.

Cheng, Y.; Xia, C.; Garalleh, H.A.; Garaleh, M.; Lan, N.T.; Brindhadevi, K. (2023). A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. Chemosphere, 315, 137706. https://doi.org/10.1016/j.chemosphere.2022.137706.

Xia, C.; Liang, Y.; Li, X.; Garalleh, H.A.; Garaleh, M.; Hill, J.M.; Pugazhendhi, A. (2023). Remediation competence of nanoparticles amalgamated biochar (nanobiochar/nanocomposite) on pollutants: A review. Environmental Research, 218, 114947. https://doi.org/10.1016/j.envres.2022.114947.

Sharma, P.; Dutta, D.; Udayan, A.; Kumar, S. (2021). Industrial wastewater purification through metal pollution reduction employing microbes and magnetic nanocomposites. Journal of Environmental Chemical Engineering, 9(6), 106673. https://doi.org/10.1016/j.jece.2021.106673.

Fu, F.; Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.

Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology and Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504.

Ali, H.; Khan, E. (2018). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment, 25(6), 1353–1376. https://doi.org/10.1080/10807039.2018.1469398.

Pinto, M.M.S.C.; Silva, M.J.; Da Silva, E.F.; Reis, A. (2017). The cancer and non-cancer risk of Santiago Island (Cape Verde) population due to potential toxic elements exposure from soils. Geosciences, 7(3), 78. https://doi.org/10.3390/geosciences7030078.

Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. (2014). Toxicity, mechanism, and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009.

Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. (2019). Water pollutants: sources and impact on the environment and human health. Advanced Functional Materials and Sensors, pp. 43–62. https://doi.org/10.1007/978-981-15-0671-0_4.

Volatile organic compounds (VOCs) (accessed on 15 February 2025) Available online: https://www.pca.state.mn.us/air/volatile-organic-compounds-vocs.

Benkhaya, S.; M’rabet, S.; Lgaz, H.; Bachiri, A.E.; Harfi, A.E. (2021). Dyes: Classification, pollution, and environmental effects. Springer eBooks, pp. 1–50. https://doi.org/10.1007/978-981-16-5932-4_1.

Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polônio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001.

Bijay-Singh; Craswell, E.T. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4). https://doi.org/10.1007/s42452-021-04521-8.

Quintana, P.J.E. (2014). Children’s environmental health. Elsevier eBooks, pp. 830–832. https://doi.org/10.1016/b978-0-12-386454-3.00801-0.

Dumontet, S.; Scopa, A.; Kerje, S.; Krovacek, K. (2001). The importance of pathogenic organisms in sewage and sewage sludge. Journal of the Air & Waste Management Association, 51(6), 848–860. https://doi.org/10.1080/10473289.2001.10464313.

Моисеенко, Т.И.; Dinu, M.I.; Гашкина, Н.А.; Jones, V.J.; Khoroshavin, V.; Кремлева, Т.А. (2018). Present status of water chemistry and acidification under nonpoint sources of pollution across European Russia and West Siberia. Environmental Research Letters, 13(10), 105007. https://doi.org/10.1088/1748-9326/aae268.

Xiao, S.; Ma, H.; Shen, M.; Wang, S.; Huang, Q.; Shi, X. (2011). Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 381(1–3), 48–54. https://doi.org/10.1016/j.colsurfa.2011.03.005.

Wei, H.; Wang, H.; Li, A.; Cui, D.; Zhao, Z.; Chu, L.; Wei, X.; Wang, L.; Pan, D.; Fan, J.; Li, Y.; Zhang, J.; Liu, C.; Wei, S.; Guo, Z. (2020). Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications. ChemNanoMat, 6(2), 174–184. https://doi.org/10.1002/cnma.201900588.

Matei, E.; Predescu, A.M.; Râpă, M.; Ţurcanu, A.A.; Mateș, I.; Constantin, N.; Predescu, C. (2022). Natural polymers and their nanocomposites used for environmental applications. Nanomaterials, 12(10), 1707. https://doi.org/10.3390/nano12101707.

Homaeigohar, S.; Elbahri, M. (2014). Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials, 7(2), 1017–1045. https://doi.org/10.3390/ma7021017.

Homaeigohar, S.; Elbahri, M. (2012). Nano galaxy. Materials Today, 15(12), 591. https://doi.org/10.1016/s1369-7021(13)70015-4.

Faccini, M.; Borja, G.; Boerrigter, M.; Martín, D.M.; Martínez-Crespiera, S.; Vázquez-Campos, S.; Aubouy, L.; Amantia, D. (2015). Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. Journal of Nanomaterials, 2015, 1–9. https://doi.org/10.1155/2015/247471.

Meng, J.; Shi, C.; Wei, B.; Wu, Y.; Deng, C.; Zhang, X. (2011). Preparation of Fe₃O₄@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. Journal of Chromatography A, 1218, 2841–2847. https://doi.org/10.1016/j.chroma.2011.03.044.

Ahmaruzzaman, M. (2022). MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Advances, 12, 34766–34789. https://doi.org/10.1039/d2ra05530a.

Nain, A.; Sangili, A.; Hu, S.; Chen, C.; Chen, Y.; Chang, H. (2022). Recent progress in nanomaterial-functionalized membranes for removal of pollutants. iScience, 25, 104616. https://doi.org/10.1016/j.isci.2022.104616.

Goyat, R.; Saharan, Y.; Singh, J.; Umar, A.; Akbar, S.A. (2022). Synthesis of graphene-based nanocomposites for environmental remediation applications: a review. Molecules, 27, 6433. https://doi.org/10.3390/molecules27196433.

Liu, Y.; Zhang, F.; Zhu, W.; Su, D.; Sang, Z.; Yan, X.; Sheng, L.; Liang, J.; Dou, S.X. (2020). A multifunctional hierarchical porous SiO₂/GO membrane for high efficiency oil/water separation and dye removal. Carbon, 160, 88–97. https://doi.org/10.1016/j.carbon.2020.01.002.

Agboola, O.; Fayomi, O.; Ayodeji, A.; Ayeni, A.O.; Alagbe, E.E.; Sanni, S.E.; Okoro, E.E.; Moropeng, L.; Sadiku, R.; Kupolati, K.W.; Oni, B.A. (2021). A review of polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation. Membranes, 11, 139. https://doi.org/10.3390/membranes11020139.

Yu, C.; Betrehem, U.M.; Ali, N.; Khan, A.; Ali, F.; Nawaz, S.; Sajid, M.; Yang, Y.; Chen, T.; Bilal, M. (2022). Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere, 306, 135656. https://doi.org/10.1016/j.chemosphere.2022.135656.

Crini, G.; Lichtfouse, É. (2018). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17, 145–155. https://doi.org/10.1007/s10311-018-0785-9.

About this article

SUBMITTED: 14 April 2025
ACCEPTED: 15 May 2025
PUBLISHED: 9 June 2025
SUBMITTED to ACCEPTED: 31 days
DOI: https://doi.org/10.53623/sein.v2i1.657

Cite this article
Son, S. W. ., Muhammad Noor Hazwan Jusoh, Parjo, U. K. ., & Mohd Dzulkifli, S. N. . (2025). Environmental Remediation Applications of Nanocomposites on Water Pollution . Sustainable Environmental Insight, 2(1), 12–23. https://doi.org/10.53623/sein.v2i1.657
Keywords
Accessed
24
Citations
0
Share this article