Organochlorine is a type of persistent organic pollutants which can last long in environment due to the resistance towards the microbial degradation. Previously, the organochlorine pesticides are widely used to reduce the pests in the farm so, the crop yield could be increased, and the losses can be decreased. The organochlorine pesticides previously are used without having a proper study on the effect of organochlorine to the environment. Although the use of organochlorine pesticides has been banned, the residues of organochlorine from previous usage, still exist in the environment, causing negative impacts to the environment and human health. The distribution of the organochlorine pollution in Malaysia is required to be studied more to ensure that the organochlorine concentration will not be increasing according to time. Due to the ban of organochlorine pesticides, other pests control methods such as organophosphate pesticides, and integrated pest management are being used by the farmers. However, there are challenges raised such as financial problem of the farmers to afford the new chemicals or methods and the negative effect from the use of new chemicals, and these challenges should be solved to improve the pest control in Malaysia. Impacts of organochlorines on human health and environment are discussed in this review to show the hazard of organochlorines.
Martyniuk, C.J.; Mehinto, A.C.; Denslow, N.D. (2020). Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Molecular and Cellular Endocrinology, 507, 110764. https://doi.org/10.1016/j.mce.2020.110764.
Moldovan, R.; Iacob, B. C.; Farcău, C.; Bodoki, E.; Oprean, R. (2021). Strategies for SERS detection of organochlorine pesticides. Nanomaterials, 11(2), 304. https://doi.org/10.3390/nano11020304.
Alazaiza, M.Y.D.; Albahnasawi, A.; Ali, G.A.M.; Bashir, M.J.K.; Copty, N.K.; Amr, S.S.A.; Abushammala, M.F.M.; Al Maskari, T. (2021). Recent advances of nanoremediation technologies for soil and groundwater remediation: A review. Water, 13(16), 2186. https://doi.org/10.3390/w13162186.
Matta, K.; Koual, M.; Ploteau, S.; Coumoul, X.; Audouze, K.; Le Bizec, B.; Cano-Sancho, G. (2021). Associations between exposure to organochlorine chemicals and endometriosis: a systematic review of experimental studies and integration of epidemiological evidence. Environmental Health Perspectives, 129(7), 076003. https://doi.org/10.1289/ehp8421.
Egbe, C.C.; Oyetibo, G.O.; Ilori, M.O. (2021). Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicology and Environmental Safety, 207, 111319. http://doi.org/10.1016/j.ecoenv.2020.111319.
Anand, M.; Taneja, A. (2020). Organochlorine pesticides residue in placenta and their influence on anthropometric measures of infants. Environmental Research, 182, 109106. https://doi.org/10.1016/j.envres.2019.109106.
Leong, K.H.; Tan, L.B.; Mustafa, A.M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153-1159. https://doi.org/10.1016/j.chemosphere.2006.06.009.
Esposito, M.; De Roma, A.; D'Alessio, N.; Danese, A.; Gallo, P.; Galiero, G.; Santoro, M. (2020). First study on PCBs, organochlorine pesticides, and trace elements in the Eurasian otter (Lutra lutra) from southern Italy. Science of The Total Environment, 749, 141452. https://doi.org/10.1016/j.scitotenv.2020.141452.
Abou Ghayda, R.; Sergeyev, O.; Burns, J.S.; Williams, P.L.; Lee, M.M.; Korrick, S.A.; Mínguez-Alarcón, L. (2020). Peripubertal serum concentrations of organochlorine pesticides and semen parameters in Russian young men. Environment International, 144, 106085. https://doi.org/10.1016/j.envint.2020.106085.
Vaezzadeh, V.; Thomes, M. W.; Kunisue, T.; Tue, N. M.; Zhang, G.; Zakaria, M. P.; Bong, C. W. (2021). Examination of barnacles’ potential to be used as bioindicators of persistent organic pollutants in coastal ecosystem: A Malaysia case study. Chemosphere, 263, 128272. https://doi.org/10.1016/j.chemosphere.2020.128272.
Monirith, I.; Ueno, D.; Takahashi, S.; Nakata, H.; Sudaryanto, A.; Subramanian, A. et al. (2003). Asia-Pacific mussel watch: monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Marine Pollution Bulletin, 46(3), 281−300. https://doi.org/10.1016/s0025-326x(02)00400-9.
Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G. P. S.; Handa, N. et al. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1−16.
Jayaraj, R.; Megha, P.; Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3−4), 90. https://doi.org/10.1515%2Fintox-2016-0012.
Prabhakaran, K.; Nagarajan, R.; Merlin Franco, F.; Anand Kumar, A. (2017). Biomonitoring of Malaysian aquatic environments: A review of status and prospects. Ecohydrology & Hydrobiology, 17(2), 134−147. https://doi.org/10.1016/j.ecohyd.2017.03.001.
Zakaria, Z.; Heng, L. Y.; Abdullah, P.; Osman, R.; Din, L. (2003). The environmental contamination by organochlorine insecticides of some agricultural areas in Malaysia. Malaysian Journal of Chemistry, 5(1), 78−85.
Leong, C.S.; Vythilingam, I.; Wong, M.L.; Sulaiman, W.Y.W.; Lau, Y. L. (2018). Aedes aegypti (Linnaeus) larvae from dengue outbreak areas in Selangor showing resistance to pyrethroids but susceptible to organophosphates. Acta Tropica, 185, 115−126. https://doi.org/10.1016/j.actatropica.2018.05.008.
Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18, 1112. https://doi.org/10.3390/ijerph18031112.
Zuharah, W.F.; Sumayyah, A.; Dieng, H. (2019). Susceptibility and fitness cost of Aedes albopictus on their survivability after the exposure to the insecticide. Journal of Asia-Pacific Entomology, 22(2), 553−560. https://doi.org/10.1371%2Fjournal.pntd.0009391.
Romeis, J.; Collatz, J.; Glandorf, D.C.; Bonsall, M.B. (2020). The value of existing regulatory frameworks for the environmental risk assessment of agricultural pest control using gene drives. Environmental Science & Policy, 108, 19−36. https://doi.org/10.1016/j.envsci.2020.02.016.
Elia-Amira, N.M.R.; C.D. Chen; K.W. Lau; H.L. Lee; V.L.; Low; Norma-Rashid, Y.; Sofian-Azirun, M. (2018). Organophosphate and Organochlorine Resistance in Larval Stage of Aedes albopictus (Diptera: Culicidae) in Sabah, Malaysia. Journal of Economic Entomology, 111(5), 2488−2492. http://doi.org/10.1093/jee/toy184.
Triassi, M.; Nardone, A.; Giovinetti, M. C.; De Rosa, E.; Canzanella, S.; Sarnacchiaro, P.; Montuori, P. (2019). Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Science of the Total Environment, 678, 741−754. https://doi.org/10.1016/j.scitotenv.2019.04.202.
Mazlan, N.; Mumford, J. (2005). Insecticide use in cabbage pest management in the Cameron Highlands, Malaysia. Crop Protection, 24(1), 31−39. https://doi.org/10.1016/j.cropro.2004.06.005.
How, V.; Hashim, Z.; Ismail, P.; Md Said, S.; Omar, D.; Bahri Mohd Tamrin, S. (2014). Exploring cancer development in adulthood: cholinesterase depression and genotoxic effect from chronic exposure to organophosphate pesticides among rural farm children. Journal of Agromedicine, 19(1), 35−43. https://doi.org/10.1080/1059924x.2013.866917.
Ali, A.; Noah, R.M.; Abd Malik, S. (2012). Legal implications on sales and purchase, uses and misuses of agrochemicals in smallholders’ agro production in Malaysia. Procedia-Social and Behavioral Sciences, 68, 156−163. https://doi.org/10.1016/j.sbspro.2012.12.215.
Syed, S.; Qasim, S.; Ejaz, M.; Sammar; Khan, N.; Ali, H.; Zaker, H.; Hatzidaki, E.; Mamoulakis, C.; Tsatsakis, A.; et al. (2023). Effects of Dichlorodiphenyltrichloroethane on the Female Reproductive Tract Leading to Infertility and Cancer: Systematic Search and Review. Toxics, 11, 725. https://doi.org/10.3390/toxics11090725.
Araki, A.; Miyashita, C.; Mitsui, T.; Goudarzi, H.; Mizutani, F.; Chisaki, Y. et al. (2018). Prenatal organochlorine pesticide exposure and the disruption of steroids and reproductive hormones in cord blood: The Hokkaido study. Environment International, 110, 1−13. https://doi.org/10.1016/j.envint.2017.10.006.
Abolhassani, M.; Asadikaram, G.; Paydar, P.; Fallah, H.; Aghaee-Afshar, M.; Moazed, V. et al. (2019). Organochlorine and organophosphorous pesticides may induce colorectal cancer; A case-control study. Ecotoxicology and Environmental Safety, 178, 168−177. https://doi.org/10.1016/j.ecoenv.2019.04.030.
Arrebola, J. P.; Belhassen, H.; Artacho-Cordón, F.; Ghali, R.; Ghorbel, H.; Boussen, H.; et al. (2015). Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: A case–control study in Tunisia. Science of the Total Environment, 520, 106−113. https://doi.org/10.1023/a:1008824131727.
Aube, M.; Larochelle, C.; Ayotte, P. (2011). Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines. Environmental Research, 111(3), 337−347. https://doi.org/10.1016/j.envres.2011.01.010.
Corsini, E.; Sokooti, M.; Galli, C.L.; Moretto, G.A.; Colosio, C. (2013). Pesticide-induced immunotoxicity in humans: A comprehensive review of the existing evidence. Toxicology, 307, 123−135. https://doi.org/10.1016/j.tox.2012.10.009.
Rivero, J.; Luzardo, O. P.; Henríquez-Hernández, L.A.; Machín, R.P.; Pestano, J.; Zumbado, M. et al. (2015). In vitro evaluation of oestrogenic/androgenic activity of the serum organochlorine pesticide mixtures previously described in a breast cancer case–control study. Science of the Total Environment, 537, 197−202. https://doi.org/10.1016/j.scitotenv.2015.08.016.
Pi, X.; Qiao, Y.; Wang, C.; Li, Z.; Liu, J.; Wang, L. et al. (2020). Concentrations of organochlorine pesticides in placental tissue are not associated with the risk of fetal orofacial clefts. Reproductive Toxicology, 98, 99−106. https://doi.org/10.1016/j.reprotox.2020.08.013.
Potapowicz, J.; Lambropoulou, D.; Nannou, C.; Kozioł, K.; Polkowska, Ż. (2020). Occurrences, sources, and transport of organochlorine pesticides in the aquatic environment of Antarctica. Science of the Total Environment, 735, 139475. https://doi.org/10.1016/j.scitotenv.2020.139475.
Jayaraj, R.; Megha, P.; Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3−4), 90. https://doi.org/10.1515%2Fintox-2016-0012.
Sawyna, J.M.; Spivia, W.R.; Radecki, K.; Fraser, D.A.; Lowe, C.G. (2017). Association between chronic organochlorine exposure and immunotoxicity in the round stingray (Urobatis halleri). Environmental Pollution, 223, 42−50. https://doi.org/10.1016/j.envpol.2016.12.019.
Tsygankov, V.Y. (2019). Organochlorine pesticides in marine ecosystems of the Far Eastern Seas of Russia (2000–2017). Water Research, 161, 43−53. https://doi.org/10.1016/j.watres.2019.05.103.
Blondel, C.; Briset, L.; Legay, N.; Arnoldi, C.; Poly, F.; Clément, J.C.; Raveton, M. (2017). Assessing the dynamic changes of rhizosphere functionality of Zea mays plants grown in organochlorine contaminated soils. Journal of Hazardous Materials, 331, 226−234. https://doi.org/10.1016/j.jhazmat.2017.02.056.
SUBMITTED: 03 January 2024
ACCEPTED: 01 March 2024
PUBLISHED:
4 March 2024
SUBMITTED to ACCEPTED: 59 days
DOI:
https://doi.org/10.53623/sein.v1i1.394