Skip to main content

Applications of Synthetic Biology in Microbial and Enzymatic Systems for Microplastic Degradation: A Review

Author(s): Kuok Ho Daniel Tang ORCID https://orcid.org/0000-0003-4474-7766
Author(s) information:
Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA

Corresponding author

Microplastic pollution poses a persistent environmental challenge due to the chemical recalcitrance, low bioavailability, and environmental stability of synthetic polymers. Synthetic biology has emerged as a powerful, integrative framework for enhancing biological degradation of microplastics by systematically engineering enzymes, microbial chassis, and metabolic pathways. This narrative review examines recent advances in enzyme engineering, whole-cell engineering, and metabolic engineering that collectively enhance the efficiency, robustness, and scalability of microbial and enzymatic systems for plastic degradation. At the enzyme level, rational design, directed evolution, and computationally guided approaches have driven substantial improvements in the catalytic performance of plastic-degrading enzymes, particularly polyester hydrolases such as PETase, MHETase, cutinases, and LCC variants. Structure-guided mutagenesis and machine-learning–assisted workflows have yielded next-generation enzymes with enhanced activity, thermostability, and substrate affinity, enabling the depolymerization of semicrystalline and post-consumer plastics under increasingly mild, industrially relevant conditions. Domain fusion strategies further address mass-transfer limitations by improving enzyme–polymer interactions, especially for highly crystalline substrates. Beyond isolated enzymes, whole-cell engineering integrates enzyme production, localization, and activity within living systems. Surface display platforms, biofilm-based immobilization, secretion systems, and multi-enzyme cascades facilitate sustained enzyme–substrate contact, reduce diffusional losses, and enable sequential depolymerization. Engineered microbial chassis have demonstrated effective microplastic degradation in controlled environments, although catalytic efficiency, intermediate toxicity, and biosafety concerns currently limit deployment in open environments. Metabolic engineering complements depolymerization by enabling microbial assimilation and conversion of plastic-derived monomers into central metabolites or value-added products, supporting closed-loop recycling and upcycling concepts. However, pathway complexity, flux imbalance, and substrate toxicity remain significant constraints. Overall, the review highlights that the most effective synthetic biology strategies for microplastic degradation arise from integrating enzyme engineering with whole-cell and systems-level optimization. While technical and economic challenges persist, continued advances in computational design, process integration, and systems synthetic biology hold strong promise for developing scalable, environmentally safe solutions aligned with circular economy principles.

Next article

Zhao, X.; Zhou, Y.; Liang, C.; Song, J.; Yu, S.; Liao, G.; Zou, P.; Tang, K.H.D.; Wu, C. (2023). Airborne microplastics: Occurrence, sources, fate, risks and mitigation. Science of The Total Environment, 858, 159943. https://doi.org/10.1016/j.scitotenv.2022.159943.

Du, J.; Xu, S.; Zhou, Q.; Li, H.; Fu, L.; Tang, J.; Wang, Y.; Peng, X.; Xu, Y.; Du, X. (2020). A review of microplastics in the aquatic environmental: Distribution, transport, ecotoxicology, and toxicological mechanisms. Environmental Science and Pollution Research, 27, 11494–11505. https://doi.org/10.1007/s11356-020-08104-9.

Tang, K.H.D. (2023). Microplastics in and near landlocked countries of Central and East Asia: A review of occurrence and characteristics. Tropical Aquatic and Soil Pollution, 3, 120–130. https://doi.org/10.53623/tasp.v3i2.262.

Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. (2024). Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environmental Pollution, 343, 123190. https://doi.org/10.1016/j.envpol.2023.123190.

Tang, K.H.D. (2024). Microplastics and antibiotics in aquatic environments: A review of their interactions and ecotoxicological implications. Tropical Aquatic and Soil Pollution, 4, 60–78. https://doi.org/10.53623/tasp.v4i1.446.

Tang, K.H.D. (2025). Genotoxicity of microplastics on living organisms: Effects on chromosomes, DNA and gene expression. Environments, 12, 10. https://doi.org/10.3390/environments12010010.

Caruso, G.; Bergami, E.; Singh, N.; Corsi, I. (2022). Plastic occurrence, sources, and impacts in Antarctic environment and biota. Water Biology and Security, 1, 100034. https://doi.org/10.1016/j.watbs.2022.100034.

Nasir, M.S.; Tahir, I.; Ali, A.; Ayub, I.; Nasir, A.; Abbas, N.; Sajjad, U.; Hamid, K. (2024). Innovative technologies for removal of micro plastic: A review of recent advances. Heliyon, 10, e25883. https://doi.org/10.1016/j.heliyon.2024.e25883.

Tang, K.H.D.; Hadibarata, T. (2022). The application of bioremediation in wastewater treatment plants for microplastics removal: A practical perspective. Bioprocess and Biosystems Engineering, 45, 1865–1878. https://doi.org/10.1007/s00449-022-02793-x.

Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351, 1196–1199. https://doi.org/10.1126/science.aad6359.

Hirschi, S.; Ward, T.R.; Meier, W.P.; Müller, D.J.; Fotiadis, D. (2022). Synthetic biology: Bottom-up assembly of molecular systems. Chemical Reviews, 122, 16294–16328. https://doi.org/10.1021/acs.chemrev.2c00339.

Wang, F.; Zhang, W. (2019). Synthetic biology: Recent progress, biosafety and biosecurity concerns, and possible solutions. Journal of Biosafety and Biosecurity, 1, 22–30. https://doi.org/10.1016/j.jobb.2018.12.003.

Thakur, S.; Mathur, S.; Patel, S.; Paital, B. (2022). Microplastic accumulation and degradation in environment via biotechnological approaches. Water, 14, 4053. https://doi.org/10.3390/w14244053.

Rylott, E.L.; Bruce, N.C. (2020). How synthetic biology can help bioremediation. Current Opinion in Chemical Biology, 58, 86–95. https://doi.org/10.1016/j.cbpa.2020.07.004.

Nyakundi, D.O.; Mogusu, E.O.; Kimaro, D.N. (2023). Genetic engineering approach to address microplastic environmental pollution: A review. Journal of Environmental Engineering and Science, 18, 179–188. https://doi.org/10.1680/jenes.22.00088.

Zhou, Y.; ZeeshanUlHaq, M. (2025). Engineering of synthetic microbial consortia for sustainable management of wastewater and polyethylene terephthalate: A comprehensive review. International Journal of Molecular Sciences, 26, 11623. https://doi.org/10.3390/ijms262311623.

Anand, U.; Dey, S.; Bontempi, E.; Ducoli, S.; Vethaak, A.D.; Dey, A.; Federici, S. (2023). Biotechnological methods to remove microplastics: A review. Environmental Chemistry Letters, 21, 1787–1810. https://doi.org/10.1007/s10311-022-01552-4.

Gaur, V.K.; Gupta, S.; Sharma, P.; Gupta, P.; Varjani, S.; Srivastava, J.K.; Chang, J.-S.; Bui, X.-T. (2022). Metabolic cascade for remediation of plastic waste: A case study on microplastic degradation. Current Pollution Reports, 8, 30–50. https://doi.org/10.1007/s40726-021-00210-7.

Kim, Y.-B.; Kim, S.; Park, C.; Yeom, S.-J. (2024). Biodegradation of polystyrene and systems biology-based approaches to the development of new biocatalysts for plastic degradation. Current Opinion in Systems Biology, 37, 100505. https://doi.org/10.1016/j.coisb.2024.100505.

Martín-González, D.; de la Fuente Tagarro, C.; De Lucas, A.; Bordel, S.; Santos-Beneit, F. (2024). Genetic modifications in bacteria for the degradation of synthetic polymers: A review. International Journal of Molecular Sciences, 25, 5536. https://doi.org/10.3390/ijms25105536.

Zhang, X.-E.; Liu, C.; Dai, J.; Yuan, Y.; Gao, C.; Feng, Y.; Wu, B.; Wei, P.; You, C.; Wang, X.; Si, T. (2023). Enabling technology and core theory of synthetic biology. Science China Life Sciences, 66, 1742–1785. https://doi.org/10.1007/s11427-022-2214-2.

Reetz, M. (2022). Making enzymes suitable for organic chemistry by rational protein design. ChemBioChem, 23, e202200049. https://doi.org/10.1002/cbic.202200049.

Sellés Vidal, L.; Isalan, M.; Heap, J.T.; Ledesma-Amaro, R. (2023). A primer to directed evolution: Current methodologies and future directions. RSC Chemical Biology, 4, 271–291. https://doi.org/10.1039/D2CB00231K.

Joho, Y.; Vongsouthi, V.; Gomez, C.; Larsen, J.S.; Ardevol, A.; Jackson, C.J. (2024). Improving plastic degrading enzymes via directed evolution. Protein Engineering, Design and Selection, 37, gzae009. https://doi.org/10.1093/protein/gzae009.

Grigorakis, K.; Ferousi, C.; Topakas, E. (2025). Protein engineering for industrial biocatalysis: Principles, approaches, and lessons from engineered PETases. Catalysts, 15, 147. https://doi.org/10.3390/catal15020147.

Bachhav, B.; deRossi, J.; Llanos, C.D.; Segatori, L. (2023). Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnology and Bioengineering, 120, 2441–2459. https://doi.org/10.1002/bit.28365.

Guindani, C.; daSilva, L.C.; Cao, S.; Ivanov, T.; Landfester, K. (2022). Synthetic cells: From simple bio-inspired modules to sophisticated integrated systems. Angewandte Chemie International Edition, 61, e202110855. https://doi.org/10.1002/anie.202110855.

Fang, Y.; Chao, K.; He, J.; Wang, Z.; Chen, Z. (2023). High-efficiency depolymerization/degradation of polyethylene terephthalate plastic by a whole-cell biocatalyst. 3 Biotech, 13, 138. https://doi.org/10.1007/s13205-023-03557-4.

Huang, Q.-S.; Chen, S.-Q.; Zhao, X.-M.; Song, L.-J.; Deng, Y.-M.; Xu, K.-W.; Yan, Z.-F.; Wu, J. (2024). Enhanced degradation of polyethylene terephthalate (PET) microplastics by an engineered Stenotrophomonas pavanii in the presence of biofilm. Science of The Total Environment, 955, 177129. https://doi.org/10.1016/j.scitotenv.2024.177129.

Li, T.; Menegatti, S.; Crook, N. (2023). Breakdown of polyethylene terephthalate microplastics under saltwater conditions using engineered Vibrio natriegens. AIChE Journal, 69, e18228. https://doi.org/10.1002/aic.18228.

Wang, C.; Long, R.; Lin, X.; Liu, W.; Zhu, L.; Jiang, L. (2024). Development and characterization of a bacterial enzyme cascade reaction system for efficient and stable PET degradation. Journal of Hazardous Materials, 472, 134480. https://doi.org/10.1016/j.jhazmat.2024.134480.

Zhu, B.; Ye, Q.; Seo, Y.; Wei, N. (2022). Enzymatic degradation of polyethylene terephthalate plastics by bacterial curli display PETase. Environmental Science & Technology Letters, 9, 650–657. https://doi.org/10.1021/acs.estlett.2c00332.

Xiong, Z.; Chen, X.; Zou, Z.; Peng, L.; Zou, L.; Liu, B.; Li, Q. (2025). Improving efficiency of bacterial degradation of polyethylene microplastics using atmospheric and room temperature plasma mutagenesis. Bioresource Technology, 418, 131930. https://doi.org/10.1016/j.biortech.2024.131930.

Kong, X.; He, A.; Zhao, J.; Wu, H.; Ma, J.; Wei, C.; Jin, W.; Jiang, M. (2016). Efficient acetone–butanol–ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation–pervaporation coupled process. Biochemical Engineering Journal, 105, 90–96. https://doi.org/10.1016/j.bej.2015.09.013.

Zhang, N.; Jiang, J.-C.; Yang, J.; Wei, M.; Zhao, J.; Xu, H.; Xie, J.-C.; Tong, Y.-J.; Yu, L. (2019). Citric acid production from acorn starch by tannin tolerance mutant Aspergillus niger AA120. Applied Biochemistry and Biotechnology, 188, 1–11. https://doi.org/10.1007/s12010-018-2902-4.

Ottenheim, C.; Nawrath, M.; Wu, J.C. (2018). Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development. Bioresources and Bioprocessing, 5, 12. https://doi.org/10.1186/s40643-018-0200-1.

Loll-Krippleber, R.; Sajtovich, V.A.; Ferguson, M.W.; Ho, B.; Burns, A.R.; Payliss, B.J.; Bellissimo, J.; Peters, S.; Roy, P.J.; Wyatt, H.D.M.; Brown, G.W. (2022). Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol. Microbial Cell Factories, 21, 280. https://doi.org/10.1186/s12934-022-02007-9.

Jiang, C.; Zhai, K.; Wright, R.C.; Chen, J. (2025). Engineered yeasts displaying PETase and MHETase as whole-cell biocatalysts for the degradation of polyethylene terephthalate (PET). ACS Synthetic Biology, 14, 2810–2820. https://doi.org/10.1021/acssynbio.5c00209.

Gulati, S.; Sun, Q. (2025). Complete enzymatic depolymerization of polyethylene terephthalate (PET) plastic using a Saccharomyces cerevisiae-based whole-cell biocatalyst. Environmental Science & Technology Letters, 12, 419–424. https://doi.org/10.1021/acs.estlett.5c00190.

Cao, Z.; Xia, W.; Wu, S.; Ma, J.; Zhou, X.; Qian, X.; Xu, A.; Dong, W.; Jiang, M. (2023). Bioengineering Comamonas testosteroni CNB-1: A robust whole-cell biocatalyst for efficient PET microplastic degradation. Bioresources and Bioprocessing, 10, 94. https://doi.org/10.1186/s40643-023-00715-7.

Zhang, A.; Hou, Y.; Wang, Y.; Wang, Q.; Shan, X.; Liu, J. (2023). Highly efficient low-temperature biodegradation of polyethylene microplastics by using cold-active laccase cell-surface display system. Bioresource Technology, 382, 129164. https://doi.org/10.1016/j.biortech.2023.129164.

Kadisch, M.; Willrodt, C.; Hillen, M.; Bühler, B.; Schmid, A. (2017). Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnology Journal, 12, 1600170. https://doi.org/10.1002/biot.201600170.

Nikel, P.I.; deLorenzo, V. (2021). Metabolic engineering for large-scale environmental bioremediation. Metabolic Engineering, 65, 859–890. https://doi.org/10.1016/j.ymben.2021.03.004.

Diao, J.; Hu, Y.; Tian, Y.; Carr, R.; Moon, T.S. (2023). Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Reports, 42, 111908. https://doi.org/10.1016/j.celrep.2022.111908.

Kim, D.H.; Han, D.O.; InShim, K.; Kim, J.K.; Pelton, J.G.; Ryu, M.H.; Joo, J.C.; Han, J.W.; Kim, H.T.; Kim, K.H. (2021). One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine. ACS Catalysis, 11, 3996–4008. https://doi.org/10.1021/acscatal.0c04014.

Kim, H.T.; Kim, J.K.; Cha, H.G.; Kang, M.J.; Lee, H.S.; Khang, T.U.; Yun, E.J.; Lee, D.-H.; Song, B.K.; Park, S.J.; Joo, J.C.; Kim, K.H. (2019). Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustainable Chemistry & Engineering, 7, 19396–19406. https://doi.org/10.1021/acssuschemeng.9b03908.

Werner, A.Z.; Clare, R.; Mand, T.D.; Pardo, I.; Ramirez, K.J.; Haugen, S.J.; Bratti, F.; Dexter, G.N.; Elmore, J.R.; Huenemann, J.D.; Peabody, G.L.; Johnson, C.W.; Rorrer, N.A.; Salvachúa, D.; Guss, A.M.; Beckham, G.T. (2021). Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metabolic Engineering, 67, 250–261. https://doi.org/10.1016/j.ymben.2021.07.005.

Ackermann, Y.S.; Li, W.-J.; OpdeHipt, L.; Niehoff, P.-J.; Casey, W.; Polen, T.; Köbbing, S.; Ballerstedt, H.; Wynands, B.; O’Connor, K.; Blank, L.M.; Wierckx, N. (2021). Engineering adipic acid metabolism in Pseudomonas putida. Metabolic Engineering, 67, 29–40. https://doi.org/10.1016/j.ymben.2021.05.001.

Zhao, M.; Huang, D.; Zhang, X.; Koffas, M.A.G.; Zhou, J.; Deng, Y. (2018). Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metabolic Engineering, 47, 254–262. https://doi.org/10.1016/j.ymben.2018.04.002.

Connor, A.; Lamb, J.V.; Delferro, M.; Koffas, M.; Zha, R.H. (2023). Two-step conversion of polyethylene into recombinant proteins using a microbial platform. Microbial Cell Factories, 22, 214. https://doi.org/10.1186/s12934-023-02220-0.

Arab, B.; Chen, J.; Khusnutdinova, A.N.; Chou, C.P.; Liu, Y. (2025). Advancing bio-recycling of nylon monomers through CRISPR-assisted engineering. Environmental Technology & Innovation, 39, 104267. https://doi.org/10.1016/j.eti.2025.104267.

Wei, R.; Oeser, T.; Schmidt, J.; Meier, R.; Barth, M.; Then, J.; Zimmermann, W. (2016). Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnology and Bioengineering, 113, 1658–1665. https://doi.org/10.1002/bit.25941.

Groseclose, T.M.; Kober, E.; Clark, M.; Moore, B.; Jha, R.K.; Taylor, Z.K.; Lujan, L.A.; Beckham, G.T.; Pickford, A.R.; Dale, T.; Nguyen, H.B. (2025). Engineering PHL7 for improved poly(ethylene terephthalate) depolymerization via rational design and directed evolution. Chem Catalysis, 5, 101399. https://doi.org/10.1016/j.checat.2025.101399.

Zeng, W.; Li, X.; Yang, Y.; Min, J.; Huang, J.-W.; Liu, W.; Niu, D.; Yang, X.; Han, X.; Zhang, L.; Dai, L.; Chen, C.-C.; Guo, R.-T. (2022). Substrate-binding mode of a thermophilic PET hydrolase and engineering the enzyme to enhance the hydrolytic efficacy. ACS Catalysis, 12, 3033–3040. https://doi.org/10.1021/acscatal.1c05800.

Brott, S.; Pfaff, L.; Schuricht, J.; Schwarz, J.-N.; Böttcher, D.; Badenhorst, C.P.S.; Wei, R.; Bornscheuer, U.T. (2022). Engineering and evaluation of thermostable IsPETase variants for PET degradation. Engineering in Life Sciences, 22, 192–203. https://doi.org/10.1002/elsc.202100105.

Nakamura, A.; Kobayashi, N.; Koga, N.; Iino, R. (2021). Positive charge introduction on the surface of thermostabilized PET hydrolase facilitates PET binding and degradation. ACS Catalysis, 11, 8550–8564. https://doi.org/10.1021/acscatal.1c01204.

Puetz, H.; Janknecht, C.; Contreras, F.; Vorobii, M.; Kurkina, T.; Schwaneberg, U. (2023). Validated high-throughput screening system for directed evolution of nylon-depolymerizing enzymes. ACS Sustainable Chemistry & Engineering, 11, 15513–15522. https://doi.org/10.1021/acssuschemeng.3c01575.

Zurier, H.S.; Goddard, J.M. (2023). PETase engineering for enhanced degradation of microplastic fibers in simulated wastewater sludge processing conditions. ACS ES&T Water, 3, 2210–2218. https://doi.org/10.1021/acsestwater.3c00021.

Pinto, G.P.; Corbella, M.; Demkiv, A.O.; Kamerlin, S.C.L. (2022). Exploiting enzyme evolution for computational protein design. Trends in Biochemical Sciences, 47, 375–389. https://doi.org/10.1016/j.tibs.2021.08.008.

Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; Cot, M.; Guémard, E.; Dalibey, M.; Nomme, J.; Cioci, G.; Barbe, S.; Chateau, M.; André, I.; Duquesne, S.; Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580, 216–219. https://doi.org/10.1038/s41586-020-2149-4.

Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.; Michener, W.E.; Amore, A.; Skaf, M.S.; Crowley, M.F.; Thorne, A.W.; Johnson, C.W.; Woodcock, H.L.; McGeehan, J.E.; Beckham, G.T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 115, E4350–E4357. https://doi.org/10.1073/pnas.1718804115.

Zheng, Y.; Li, Q.; Liu, P.; Yuan, Y.; Dian, L.; Wang, Q.; Liang, Q.; Su, T.; Qi, Q. (2024). Dynamic docking-assisted engineering of hydrolases for efficient PET depolymerization. ACS Catalysis, 14, 3627–3639. https://doi.org/10.1021/acscatal.4c00400.

Then, J.; Wei, R.; Oeser, T.; Gerdts, A.; Schmidt, J.; Barth, M.; Zimmermann, W. (2016). A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio, 6, 425–432. https://doi.org/10.1002/2211-5463.12053.

Pfaff, L.; Gao, J.; Li, Z.; Jäckering, A.; Weber, G.; Mican, J.; Chen, Y.; Dong, W.; Han, X.; Feiler, C.G.; Ao, Y.-F.; Badenhorst, C.P.S.; Bednar, D.; Palm, G.J.; Lammers, M.; Damborsky, J.; Strodel, B.; Liu, W.; Bornscheuer, U.T.; Wei, R. (2022). Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase. ACS Catalysis, 12, 9790–9800. https://doi.org/10.1021/acscatal.2c02275.

Cui, Y.; Chen, Y.; Liu, X.; Dong, S.; Tian, Y.E.; Qiao, Y.; Mitra, R.; Han, J.; Li, C.; Han, X.; Liu, W.; Chen, Q.; Wei, W.; Wang, X.; Du, W.; Tang, S.; Xiang, H.; Liu, H.; Liang, Y.; Houk, K.N.; Wu, B. (2021). Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catalysis, 11, 1340–1350. https://doi.org/10.1021/acscatal.0c05126.

Lu, H.; Diaz, D.J.; Czarnecki, N.J.; Zhu, C.; Kim, W.; Shroff, R.; Acosta, D.J.; Alexander, B.R.; Cole, H.O.; Zhang, Y.; Lynd, N.A.; Ellington, A.D.; Alper, H.S. (2022). Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604, 662–667. https://doi.org/10.1038/s41586-022-04599-z.

Ding, Z.; Xu, G.; Miao, R.; Wu, N.; Zhang, W.; Yao, B.; Guan, F.; Huang, H.; Tian, J. (2023). Rational redesign of thermophilic PET hydrolase LCCICCG to enhance hydrolysis of high crystallinity polyethylene terephthalates. Journal of Hazardous Materials, 453, 131386. https://doi.org/10.1016/j.jhazmat.2023.131386.

Li, Q.; Zheng, Y.; Su, T.; Wang, Q.; Liang, Q.; Zhang, Z.; Qi, Q.; Tian, J. (2022). Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Computational and Structural Biotechnology Journal, 20, 459–470. https://doi.org/10.1016/j.csbj.2021.12.042.

Wang, X.; Jiang, Y.; Liu, H.; Yuan, H.; Huang, D.; Wang, T. (2023). Research progress of multi-enzyme complexes based on the design of scaffold protein. Bioresources and Bioprocessing, 10, 72. https://doi.org/10.1186/s40643-023-00695-8.

Chen, K.; Hu, Y.; Dong, X.; Sun, Y. (2021). Molecular insights into the enhanced performance of EKylated PETase toward PET degradation. ACS Catalysis, 11, 7358–7370. https://doi.org/10.1021/acscatal.1c01062.

Xue, R.; Chen, Y.; Rong, H.; Wei, R.; Cui, Z.; Zhou, J.; Dong, W.; Jiang, M. (2021). Fusion of chitin-binding domain from Chitinolyticbacter meiyuanensis SYBC-H1 to the leaf-branch compost cutinase for enhanced PET hydrolysis. Frontiers in Bioengineering and Biotechnology, 9, 762854. https://doi.org/10.3389/fbioe.2021.762854.

Dai, L.; Qu, Y.; Huang, J.-W.; Hu, Y.; Hu, H.; Li, S.; Chen, C.-C.; Guo, R.-T. (2021). Enhancing PET hydrolytic enzyme activity by fusion of the cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei. Journal of Biotechnology, 334, 47–50. https://doi.org/10.1016/j.jbiotec.2021.05.006.

Liu, Z.; Zhang, Y.; Wu, J. (2022). Enhancement of PET biodegradation by anchor peptide-cutinase fusion protein. Enzyme and Microbial Technology, 156, 110004. https://doi.org/10.1016/j.enzmictec.2022.110004.

Graham, R.; Erickson, E.; Brizendine, R.K.; Salvachúa, D.; Michener, W.E.; Li, Y.; Tan, Z.; Beckham, G.T.; McGeehan, J.E.; Pickford, A.R. (2022). The role of binding modules in enzymatic poly(ethylene terephthalate) hydrolysis at high-solids loadings. Chem Catalysis, 2, 2644–2657. https://doi.org/10.1016/j.checat.2022.07.018.

Schneier, A.; Melaugh, G.; Sadler, J.C. (2024). Engineered plastic-associated bacteria for biodegradation and bioremediation. Biotechnology for the Environment, 1, 7. https://doi.org/10.1186/s44314-024-00007-0.

Liu, F.; Wang, T.; Liu, X.-H.; Xu, N.; Pan, X.-L. (2025). Efficient biodegradation and upcycling of polyethylene terephthalate mediated by cell-factories. Frontiers in Microbiology, 16, 1599470. https://doi.org/10.3389/fmicb.2025.1599470.

Satta, A.; Zampieri, G.; Loprete, G.; Campanaro, S.; Treu, L.; Bergantino, E. (2024). Metabolic and enzymatic engineering strategies for polyethylene terephthalate degradation and valorization. Reviews in Environmental Science and Bio/Technology, 23, 351–383. https://doi.org/10.1007/s11157-024-09688-1.

Sefidi Heris, Y. (2025). Different aspects of bacterial polyethylene terephthalate biodegradation. Bulletin of the National Research Centre, 49, 28. https://doi.org/10.1186/s42269-025-01321-7.

Glandorf, D.C.M. (2019). Re-evaluation of biosafety questions on genetically modified biocontrol bacteria. European Journal of Plant Pathology, 154, 43–51. https://doi.org/10.1007/s10658-018-1598-1.

Chai, T.; Tao, Y.; Zhao, C.; Chen, X. (2025). Hierarchical metabolic engineering for rewiring cellular metabolism. FEMS Microbiology Reviews, 49, fuaf047. https://doi.org/10.1093/femsre/fuaf047.

Xu, P.; Lin, N.-Q.; Zhang, Z.-Q.; Liu, J.-Z. (2024). Strategies to increase the robustness of microbial cell factories. Advanced Biotechnology, 2, 9. https://doi.org/10.1007/s44307-024-00018-8.

Tang, K.H.D.; Li, R. (2024). Aged microplastics and antibiotic resistance genes: A review of aging effects on their interactions. Antibiotics, 13. https://doi.org/10.3390/antibiotics13100941.

Tang, K.H.D.; Li, R. (2024). The effects of plastisphere on the physicochemical properties of microplastics. Bioprocess and Biosystems Engineering, 48, 1–15. https://doi.org/10.1007/s00449-024-03059-4.

Rajakumara, E.; Abhishek, S.; Nitin, K.; Saniya, D.; Bajaj, P.; Schwaneberg, U.; Davari, M.D. (2022). Structure and cooperativity in substrate–enzyme interactions: Perspectives on enzyme engineering and inhibitor design. ACS Chemical Biology, 17, 266–280. https://doi.org/10.1021/acschembio.1c00500.

About this article

SUBMITTED: 21 January 2026
ACCEPTED: 10 February 2026
PUBLISHED: 12 February 2026
SUBMITTED to ACCEPTED: 20 days
DOI: https://doi.org/10.53623/sein.v3i1.1003

Cite this article
Tang, K. H. D. (2026). Applications of Synthetic Biology in Microbial and Enzymatic Systems for Microplastic Degradation: A Review. Sustainable Environmental Insight, 3(1), 17–43. https://doi.org/10.53623/sein.v3i1.1003
Keywords
Citations
0
Share this article