Skip to main content

A Sustainable Sugarcane Bagasse Biochar–Bentonite Composite for Peroxide Value Reduction in Used Cooking Oil

Author(s): Avissa Auryn Wijayanti 1 , Adhi Yuniarto 1 ORCID https://orcid.org/0000-0002-7492-6901 , Indah Nurhayati 2 ORCID https://orcid.org/0000-0003-0332-3799 , Sagita Rochman 3 ORCID https://orcid.org/0009-0002-9160-5939
Author(s) information:
1 Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
2 Department of Environmental Engineering, Faculty of Engineering, Universitas PGRI Adi Buana Surabaya, Surabaya, 60234, Indonesia
3 Department of Electrical Engineering, Faculty of Engineering, Universitas PGRI Adi Buana Surabaya, Surabaya, 60234, Indonesia

Corresponding author

Used cooking oil underwent thermal and oxidative degradation due to repeated heating, resulting in increased peroxide levels and producing rancid odors, discoloration, and potential toxicity. In this study, the initial peroxide value of the used cooking oil was 56.42 meq O₂/kg, indicating significant oxidative degradation. The study evaluated the ability of activated sugarcane bagasse-bentonite (ASBB) and non-activated (SBB) composites to reduce peroxide values. Characterization was performed using SEM-EDX and FTIR, while adsorption efficiency was tested by varying the adsorbent dose (2–10 g) and treatment time (0–180 minutes). Peroxide reduction was analyzed using iodometric titration. The results showed that ASBB was more effective, with 10 g of ASBB and 180 minutes of treatment reducing the peroxide value by up to 82.3–84.5%.

Viantini, F.; Yustinah. (2015). Pengaruh Teperatur pada Proses Pemurnian Minyak Goreng Bekas dengan Buah Mengkudu. Konversi, 4(2), 53–62. https://doi.org/10.1007/978-94-007-5653-3_35.

Chairgulprasert, V.; Madlah, P. (2018). Removal of Free Fatty Acid from Used Palm Oil by Coffee Husk Ash. Science and Technology Asia, 23(3), 1–9. https://doi.org/10.14456/scitechasia.2018.18.

Husnah, H.; Nurlela, N. (2020). Analisa Bilangan Peroksida Terhadap Kualitas Minyak Goreng Sebelum dan Sesudah Dipaka Berulang. Jurnal Redoks, 5(1), 65–71. https://doi.org/10.31851/redoks.v5i1.4129.

Burhan, A. H.; Rini, Y. P.; Faramudika, E.; Widiastusi, R. (2018). Penetapan Angka Peroksida Minyak Goreng Curah Sawit Pada Penggorengan Berulang Ikan Lele. Jurnal Pendidikan Sains (Jps), 6(2), 48. https://doi.org/10.26714/jps.6.2.2018.48-53.

Kumar, A.; Bhayana, S.; Singh, P. K.; Tripathi, A. D.; Paul, V.; Balodi, V.; Agarwal, A. (2025). Valorization of Used Cooking Oil: Challenges, Current Developments, Life Cycle Assessment and Future Prospects. Discover Sustainability, 6, 119. https://doi.org/10.1007/s43621-025-00905-7.

Gusti, U. A.; Surtikanti, H. K. (2024). Analisis Limbah Minyak Jelantah Hasil Penggorengan Pelaku UMKM di Kelurahan Gegerkalong Kota Bandung. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 8, 263–272. https://doi.org/10.26760/jrh.v8i3.263-272.

Huang, L.; Ye, J.; Jiang, K.; Wang, Y.; Li, Y. (2021). Oil Contamination Drives the Transformation of Soil Microbial Communities: Co-occurrence Pattern, Metabolic Enzymes and Culturable Hydrocarbon-degrading Bacteria. Ecotoxicology and Environmental Safety, 225. https://doi.org/10.1016/j.ecoenv.2021.112740.

Priskila, G.; Darmawan, P. (2022). Analisis Bilangan Peroksida dan Asam Lemak Bebas pada Minyak Goreng Curah Tidak Bermerek di Pasar Tradisional. Jurnal Kimia Dan Rekayasa, 3(1), 21–26. https://doi.org/10.31001/jkireka.v3i1.41.

Amalina, F.; Syukor Abd Razak, A.; Krishnan, S.; Sulaiman, H.; Zularisam, A. W.; Nasrullah, M. (2022). Advanced Techniques in The Production of Biochar from Lignocellulosic Biomass and Environmental Applications. Cleaner Materials, 6, 100137. https://doi.org/10.1016/j.clema.2022.100137.

Yogalakshmi, K. N.; Poornima, D. T.; Sivashanmugam, P.; Kavitha, S.; Yukesh, K. R.; Varjani, S.; AdishKumar, S.; Kumar, G.; Rajesh, B. J. (2022). Lignocellulosic Biomass-Based Pyrolysis: A Comprehensive Review. Chemosphere, 286(P2), 131824. https://doi.org/10.1016/j.chemosphere.2021.131824.

Al-Hammood, A. A.; Frayyeh, Q. J.; Abbas, W. A. (2021). Raw Bentonite as Supplementary Cementitious Material - A Review. Journal of Physics: Conference Series, 1795, 012018. https://doi.org/10.1088/1742-6596/1795/1/012018.

Rana, M. S.; Kim, S. (2024). Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries. Materials, 17(9), 1982. https://doi.org/10.3390/ma17091982.

Ifa, L.; Syarif, T.; Sartia, S.; Juliani, J.; Nurdjannah, N.; Kusuma, H. S. (2022). Techno-economics of Coconut Coir Bioadsorbent Utilization on Free Fatty Acid Level Reduction in Crude Palm Oil. Heliyon, 8(3), e09146. https://doi.org/10.1016/j.heliyon.2022.e09146.

Adeniyi, A. G.; Sanusi, S. K.; Abdulkareem, S. A.; Ighalo, J. O.; Onifade, D. V. (2020). Thermochemical Co-conversion of Sugarcane Bagasse-LDPE Hybrid Waste into Biochar. Arabian Journal for Science and Engineering, 46, 6391–6397. https://doi.org/10.1007/s13369-020-05119-9.

Sathyabama, K.; Firdous, S. (2025). Effect of Pyrolysis Temperature on the Physicochemical Properties and Structural Characteristics of Agricultural Wastes-Derived Biochar [Research-article]. ACS Omega, 10, 37013–37024. https://doi.org/10.1021/acsomega.5c00120.

Tomczyk, A. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3.

Premchand, P.; Demichelis, F.; Galletti, C.; Chiaramonti, D. (2024). Enhancing Biochar Production: A Technical Analysis of The Combined Influence of Chemical Activation (KOH and NaOH) and Pyrolysis Atmospheres. Journal of Environmental Management, 370, 123034. https://doi.org/10.1016/j.jenvman.2024.123034.

Valenga, M. G. P.; Gevaerd, A.; Marcolino-junior, L. H.; Bergamini, F. (2024). Biochar from sugarcane bagasse: Synthesis, characterization, and application in an electrochemical sensor for copper (II) determination. Biomass and Bioenergy, 184, 107206. https://doi.org/10.1016/j.biombioe.2024.107206.

Rupngam, T.; Udomkun, P.; Boonupara, T. (2025). Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties. Agronomy, 15, 2015. https://doi.org/10.3390/agronomy15082015.

Newton, A. G.; Kwon, K. D.; Cheong, D. (2016). Edge Structure of Montmorillonite from Atomistic Simulations. Minerals, 6, 25. https://doi.org/10.3390/min6020025.

Lee, Y. G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Cho, K. H.; Chon, K. (2021). Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies, 14(5), 1297. https://doi.org/10.3390/en14051297.

Hakim, M. S.; Iqbal, R. M.; Adany, F.; Putra, R.; Nitriany, I.; Telaumbanua, I. S.; Sitorus, R. U.; Dewi, R. K. (2024). A Review on Development of Porous Aluminosilicate-Based Zeolite Adsorbent for Heavy Metal Pollution Treatment. Jurnal Sains Materi Indonesia (JUSAMI), 25(2), 85–99. https://doi.org/10.55981/jsmi.2024.1076.

Hisbullah; Kana, S.; Faisal, M. (2022). Characterization of Physically and Chemically Activated Carbon Derived from Palm Kernal Shells. International Journal of Geomate, 23(97), 203–210.

El-nemr, M. A.; Nemr, A. El; Hassaan, M. A.; Ragab, S.; Tedone, L.; Mastro, G. De; Pantaleo, A. (2022). Microporous Activated Carbon from Pisum sativum Pods Using Various Activation Methods and Tested for Adsorption of Acid Orange 7 Dye from Water. Molecules, 27, 4840. https://doi.org/10.3390/molecules27154840.

Jha, S.; Gaur, R.; Shahabuddin, S. (2023). Biochar as Sustainable Alternative and Green Adsorbent for the Remediation of Noxious Pollutants: A Comprehensive Review. Toxics, 11, 117. https://doi.org/10.3390/toxics11020117

Zain, N. B. M.; Salleh, N. J.; Hisamuddin, N. F.; Hashim, S.; Abdullah, N. H. (2022). Adsorption of Phosphorus Using Cockle Shell Waste. Industrial and Domestic Waste Management, 2(1), 30–38. https://doi.org/10.53623/idwm.v2i1.81.

Irawan, D.; Wijayanti, W.; Wahyudi, S.; Wardana, I. N. G. (2025). Modification effects of Na-bentonite catalyst with organic compounds increasing hydrogen production from biomass pyrolysis. Case Studies in Chemical and Environmental Engineering, 11, 101206. https://doi.org/10.1016/j.cscee.2025.101206.

Suzuki, R. (2024). Effect of Adding Bentonite to Porous Silica via the Sol − Gel Method. ACS Omega, 9, 10577–10582. https://doi.org/10.1021/acsomega.3c08832.

Jedynak, K.; Charmas, B. (2024). Adsorption properties of biochars obtained by KOH activation. Adsorption, 30(2), 167–183. https://doi.org/10.1007/s10450-023-00399-7.

Faggiano, A.; Cicatelli, A.; Guarino, F.; Castiglione, S.; Proto, A.; Fiorentino, A.; Motta, O. (2025). Optimizing CO2 capture: Effects of chemical functionalization on woodchip biochar adsorption performance. Journal of Environmental Management, 380, 125059. https://doi.org/10.1016/j.jenvman.2025.125059.

Wardoyo, F. A. (2018). Penurunan Bilangan Peroksida Pada Minyak Jelantah Menggunakan Serbuk Daun Pepaya. Jurnal Pangan Dan Gizi, 8(2).

Marlina, R.; Oktasari, A.; Rohmatullaili, R. (2022). Utilization of Adsorbent Cocoa Shell For Purification of Used Cooking Oil. Stannum: Jurnal Sains dan Terapan Kimia, 4(1), 6–12. https://doi.org/10.33019/jstk.v4i1.2638.

Zafeer, M. K.; Menezes, R. A.; Venkatachalam, H.; Bhat, K. S. (2024). Sugarcane Bagasse-based Biochar and Its Potential Applications: A Review. Emergent Materials, 7(1), 133–161. https://doi.org/10.1007/s42247-023-00603-y.

Murtaza, G.; Ahmed, Z.; Valipour, M.; Ali, I.; Usman, M.; Iqbal, R.; Zulfiqar, U.; Rizwan, M. (2024). Recent trends and economic significance of modified / functionalized biochars for remediation of environmental pollutants. Scientific Reports, 14, 217. https://doi.org/10.1038/s41598-023-50623-1.

Kouadio, L. M.; Larregieu, M.; Tillous, K. E. N.; Sei, J.; Tison, Y.; Parat, C.; Pannier, F.; Martinez, H. (2024). Evaluation of the capacity of Ivory Coast clay to depollute water contaminated by Hg, Pb, Cd and As. South Africa Journal of Chemistry, 177, 170–177. https://doi.org/10.17159/0379-4350/2024/v78a23.

Anuar, F. I.; Hadibarata, T.; Muryanto; Yuniarto, A.; Priyandoko, D.; Sari, A. A. (2019). Innovative Chemically Modified Bioadsorbent for Removal of Procion Red. International Journal of Technology, 10(4), 776–786. https://doi.org/10.14716/ijtech.v10i4.2398.

Hamid, S. B. A.; Chowdhury, Z. Z.; Zain, S. M. (2014). Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu(II) Ions in Single Solute System. Materials, 7, 2815–2832. https://doi.org/10.3390/ma7042815.

Biyikoğlu, M. (2025). Innovative approaches in wastewater treatment: kinetic and isotherm investigation of dye adsorption on sulfur-modified PET fibers. Research on Chemical Intermediates, 51(6), 3281–3299. https://doi.org/10.1007/s11164-025-05599-0.

Arumugham, T.; Yuniarto, A.; Abdullah, N.; Yuzir, A.; Kamyab, H.; Pa, N. F. C.; Rezania, S.; Hatta, M. N. M. (2023). Preparation and Characterisation of Porous Activated Carbon Using Potassium Hydroxide Chemical Activation with Ultrasonic Association. Biomass Conversion and Biorefinery, 15(19), 26071–26083. https://doi.org/10.1007/s13399-023-05201-w.

Ma, H.; Xu, Z.; Wang, W.; Gao, X.; Ma, H. (2019). Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution. RSC Advances, 9, 39282–39293. https://doi.org/10.1039/c9ra07943b.

About this article

SUBMITTED: 04 December 2025
ACCEPTED: 23 December 2025
PUBLISHED: 24 December 2025
SUBMITTED to ACCEPTED: 19 days
DOI: https://doi.org/10.53623/idwm.v5i2.945

Cite this article
Wijayanti, A. A., Yuniarto, A., Nurhayati, I., & Rochman, S. (2025). A Sustainable Sugarcane Bagasse Biochar–Bentonite Composite for Peroxide Value Reduction in Used Cooking Oil. Industrial and Domestic Waste Management, 5(2), 182−194. https://doi.org/10.53623/idwm.v5i2.945
Keywords
Accessed
6
Citations
0
Share this article