Skip to main content

Occurrence, Risks, and Treatment of Pharmaceutical Contaminants in Malaysia’s Aquatic Systems

Author(s): Edita Ayoka Kiranparahita 1 , Nur Afiqah Rahman 2 , John Mwangi 3
Author(s) information:
1 Department of Civil and Construction Engineering, Curtin University, CDT 250, Miri 98009, Malaysia.
2 EcoSynth Research Institute, Persiaran Multimedia, Cyberjaya, 63000 Selangor, Malaysia.
3 Department of Environmental Sciences, University of Nairobi, Nairobi, Kenya.

Corresponding author

Pharmaceutical and personal care products (PPCPs) are increasingly recognized as emerging contaminants in aquatic ecosystems due to their persistence, bioaccumulation potential, and adverse effects on both human health and aquatic life. In Malaysia, particularly in the state of Selangor, the rapid growth in population and healthcare demand has led to rising pharmaceutical consumption and subsequent contamination of surface water, tap water, and drinking water sources. Recent studies have detected compounds such as diclofenac, triclosan, ciprofloxacin, caffeine, and sulfamethoxazole in local water bodies, with concentrations often exceeding those reported in developed countries such as Australia and Taiwan. This trend highlights the inefficiency of conventional wastewater treatment plants (WWTPs) in removing pharmaceutical residues. The persistence of these contaminants poses potential health risks, including antibiotic resistance, endocrine disruption, and long-term toxicity to aquatic organisms and humans. Current treatment technologies in Malaysia, including adsorption, bioremediation, and activated sludge systems, have shown partial removal efficiency but remain inadequate for complete elimination of PPCPs. To address this limitation, emerging research recommends integrating hybrid treatment systems that combine biological and physicochemical processes to enhance contaminant removal efficiency. The aim of this study is to assess the occurrence and distribution of pharmaceutical contaminants in Selangor’s aquatic system, evaluate their potential risks, and discuss the limitations of existing wastewater treatment technologies while proposing sustainable alternatives for improved water quality management. Overall, the findings emphasize the urgent need for policy revision, technological innovation, and stricter monitoring to safeguard public health and environmental integrity in Malaysia.

Previous article

Chakraborty, A.; Adhikary, S.; Bhattacharya, S.; Dutta, S.; Chatterjee, S.; Banerjee, D.; Ganguly, A.; Rajak, P. (2023). Pharmaceuticals and Personal Care Products as Emerging Environmental Contaminants: Prevalence, Toxicity, and Remedial Approaches. ACS Chemical Health & Safety, 30, 362–388. https://doi.org/10.1021/ACS.CHAS.3C00071.

Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. (2023). Pharmaceuticals and personal care products as emerging contaminants. Journal of Hazardous Materials Advances, 9, 100206. https://doi.org/10.1016/J.HAZADV.2022.100206.

Choudhury, M.; Adhikari, M.D.; Agarwal, S.; Samanta, P.; Sharma, A.; Kundu, D.; Kumar, S. (2025). Pharmaceuticals and personal care products in soil: Sources, impacts and myco-remediation strategies. Emerging Contaminants, 11, 100488. https://doi.org/10.1016/J.EMCON.2025.100488.

Rajpoot, K., Desai, N., Koppisetti, H.P., Tekade, M., Sharma, M.C., Behera, S.K., Tekade, R.K. (2022). In silico methods for the prediction of drug toxicity. In Pharmacokinetics and toxicokinetic considerations – Vol II; Tekade, R.K., Ed.; Academic Press: New York, USA. pp. 357–383. https://doi.org/10.1016/B978-0-323-98367-9.00012-3.

Malaysian statistics on medicines 2011–2014. (accessed on 21 November 2023) Available online: https://pharmacy.moh.gov.my/sites/default/files/document-upload/malaysian-statistics-medicines-2011-2014.pdf.

Malaysian statistics on medicines 2015–2016. (accessed on 21 November 2023). Available online: https://pharmacy.moh.gov.my/sites/default/files/document-upload/malaysian-statistics-medicines-2015-2016.pdf.

Malaysian statistics on medicines 2017. (accessed on 21 November 2023). Available online: https://pharmacy.moh.gov.my/sites/default/files/document-upload/malaysian-statistics-medicines-2017.pdf.

Malaysian statistics on medicines 2018–2022. (accessed on 21 November 2023). Available online: https://pharmacy.moh.gov.my/sites/default/files/document-upload/msom-2018-2022-15102024.pdf.

Ariffin, M.; Zakili, T.S.T. (2019). Household Pharmaceutical Waste Disposal in Selangor, Malaysia—Policy, Public Perception, and Current Practices. Environmental Management, 64, 509–519. https://doi.org/10.1007/S00267-019-01199-Y.

Arumugam, A.; Lee, K.E.; Ng, P.Y.; Shamsuddin, A.S.; Zulkifli, A.; Goh, T.L. (2025). Pharmaceuticals as emerging pollutants: Implications for water resource management in Malaysia. Emerging Contaminants, 11, 100470. https://doi.org/10.1016/J.EMCON.2025.100470.

Nasir, F.A.M.; Praveena, S.M.; Aris, A.Z. (2019). Public awareness level and occurrence of pharmaceutical residues in drinking water. Ecotoxicology and Environmental Safety, 185, 109681. https://doi.org/10.1016/J.ECOENV.2019.109681.

Basheer, A.O.; Hanafiah, M.M.; Abdulhasan, M.J. (2017). A Study on Water Quality from Langat River, Selangor. Acta Scientifica Malaysia, 1, 1–04. https://doi.org/10.26480/asm.02.2017.01.04.

Thai, T., Salisbury, B.H., Zito, P.M. (2023). Ciprofloxacin. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535454/.

Kardos, N.; Demain, A.L. (2011). Penicillin: The medicine with the greatest impact on therapeutic outcomes. Applied Microbiology and Biotechnology, 92, 677–687. https://doi.org/10.1007/S00253-011-3587-6.

Ovung, A.; Bhattacharyya, J. (2021). Sulfonamide drugs: structure, antibacterial property, toxicity. Biophysical Reviews, 13, 259. https://doi.org/10.1007/S12551-021-00795-9.

Olaniyan, L.W.B.; Mkwetshana, N.; Okoh, A.I. (2016). Triclosan in water. SpringerPlus, 5, 1–17. https://doi.org/10.1186/S40064-016-3287-X.

Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3, 1–16. https://doi.org/10.1016/J.EMCON.2016.12.004.

Ayoub, S.S. (2021). Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature, 8, 351–371. https://doi.org/10.1080/23328940.2021.1886392.

Przedpełska, L., Witczak, A., Niewiada, K.P. (2025). Non-steroidal anti-inflammatory drugs as emerging water and food contaminants: Review. Reviews in Environmental Science and Biotechnology, 24(3), 571–605. https://doi.org/10.1007/s11157-025-09735-5.

Carone, L.; Oxberry, S.G.; Twycross, R.; Charlesworth, S.; Mihalyo, M.; Wilcock, A. (2016). Furosemide. Journal of Pain and Symptom Management, 52, 144–150. https://doi.org/10.1016/J.JPAINSYMMAN.2016.05.004.

Gurbuz, T.B.; Aslan, K.; Kasapoglu, I.; Muzii, L.; Uncu, G. (2025). Norethindrone acetate versus dienogest for pain relief in endometriosis related pain. European Journal of Obstetrics & Gynecology and Reproductive Biology, 310, 113940. https://doi.org/10.1016/J.EJOGRB.2025.113940.

Miyagawa, S.; Sato, T.; Iguchi, T. (2021). 17α-Ethinylestradiol. Handbook of Hormones, 1007–1008. https://doi.org/10.1016/B978-0-12-820649-2.00279-5.

Hayes, A.; Murray, L.M.; Stanton, I.C.; et al. (2022). Predicting selection for antimicrobial resistance in UK wastewater and aquatic environments: Ciprofloxacin poses a significant risk. Environment International, 169, 107488. https://doi.org/10.1016/J.ENVINT.2022.107488.

Hassali, M.A.; Shakeel, S. (2020). Unused and Expired Medications Disposal Practices among the General Public in Selangor, Malaysia. Pharmacy, 8, 1–11. https://doi.org/10.3390/PHARMACY8040196.

Hanafiah, Z.M.; Mohtar, W.H.M.W.; Manan, T.S.A.; et al. (2023). Determination and risk assessment of pharmaceutical residues in the urban water cycle in Selangor Darul Ehsan, Malaysia. PeerJ, 11, e14719. https://doi.org/10.7717/PEERJ.14719/SUPP-3.

Mohtar, W.H.M.W.; Maulud, K.N.A.; Muhammad, N.S.; Sharil, S.; Yaseen, Z.M. (2019). Spatial and temporal risk quotient-based river assessment. Environmental Pollution, 248, 133–144. https://doi.org/10.1016/J.ENVPOL.2019.02.011.

Al-Odaini, N.A.; Zakaria, M.P.; Yaziz, M.I.; Surif, S.; Abdulghani, M. (2013). The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. International Journal of Environmental Analytical Chemistry, 93, 245–264. https://doi.org/10.1080/03067319.2011.592949.

Li, W.C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193–201. https://doi.org/10.1016/J.ENVPOL.2014.01.015.

Liu, H.Q.; Lam, J.C.W.; Li, W.W.; Yu, H.Q.; Lam, P.K.S. (2017). Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. Science of The Total Environment, 586, 1162–1169. https://doi.org/10.1016/J.SCITOTENV.2017.02.107.

Wee, S.Y.; Aris, A.Z. (2017). Endocrine-disrupting compounds in drinking water supply system and human health risk implication. Environment International, 106, 207–233. https://doi.org/10.1016/j.envint.2017.05.004.

Wee, S.Y.; Haron, D.E.M.; Aris, A.Z.; Yusoff, F.M.; Praveena, S.M. (2020). Active pharmaceutical ingredients in Malaysian drinking water: Consumption, exposure, and human health risk. Environmental Geochemistry and Health, 42(10), 3247–3261. https://doi.org/10.1007/s10653-020-00565-8.

Lie, M.; Rubiyatno; Binhudayb, F.S.; Thao, N.T.T.; Kristanti, R.A. (2024). Assessing the Impact of Pharmaceutical Contamination in Malaysian Groundwater. Tropical Aquatic and Soil Pollution, 4, 43–59. https://doi.org/10.53623/tasp.v4i1.437.

Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. (2019). Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicology and Environmental Safety, 180, 549–556. https://doi.org/10.1016/j.ecoenv.2019.05.051.

Subari, S.N.M.; Osman, R.; Saim, N. (2017). Occurrence, source apportionment and environmental risk assessment of pharmaceuticals in Klang River, Malaysia. Pertanika Journal of Science & Technology, 25, 119–128.

Praveena, S.M.; Aris, A.Z. (2019). Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk: A study from Kajang (Malaysia). Ecotoxicology and Environmental Safety, 185, 109681. https://doi.org/10.1016/j.ecoenv.2019.109681.

Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T.; Aris, A.Z. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Science of the Total Environment, 642, 230–240. https://doi.org/10.1016/j.scitotenv.2018.06.058.

Valcárcel, Y.; González Alonso, S.; Rodríguez-Gil, J.L.; Gil, A.; Catalá, M. (2011). Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere, 84(10), 1336–1348. https://doi.org/10.1016/j.chemosphere.2011.05.014.

Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of the Total Environment, 407(8), 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059.

Othman, A.; Ariffin, M. (2019). Source water protection from pharmaceutical contaminants. Planning Malaysia, 17, 168–178.

Yang, G.C.C.; Yen, C.H.; Wang, C.L. (2014). Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. Journal of Hazardous Materials, 277, 53–61. https://doi.org/10.1016/j.jhazmat.2014.03.005.

Lee, J.; Ji, K.; Lim Kho, Y.; Kim, P.; Choi, K. (2011). Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicology and Environmental Safety, 74, 1216–1225. https://doi.org/10.1016/J.ECOENV.2011.03.014.

Memmert, U.; Peither, A.; Burri, R.; et al. (2013). Diclofenac: New data on chronic toxicity and bioconcentration in fish. Environmental Toxicology and Chemistry, 32, 442–452. https://doi.org/10.1002/ETC.2085.

Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. (2016). Diclofenac and its transformation products. Environment International, 96, 127–138. https://doi.org/10.1016/J.ENVINT.2016.09.014.

Kołodziejska, J.; Kołodziejczyk, M. (2018). Diclofenac in the treatment of pain in patients with rheumatic diseases. Reumatologia, 56, 174. https://doi.org/10.5114/REUM.2018.76816.

Lee, J.S.; Lee, J.S.; Kim, H.S. (2024). Toxic effects of triclosan in aquatic organisms. Science of The Total Environment, 920, 170902. https://doi.org/10.1016/J.SCITOTENV.2024.170902.

Binelli, A.; Cogni, D.; Parolini, M.; Riva, C.; Provini, A. (2009). Cytotoxic and genotoxic effects of in vitro exposure to Triclosan and Trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150, 50–56. https://doi.org/10.1016/J.CBPC.2009.02.005.

Song, X.; Wang, X.; Bhandari, R.K. (2020). Developmental abnormalities and epigenetic alterations in medaka (Oryzias latipes) embryos induced by triclosan exposure. Chemosphere, 261, 127613. https://doi.org/10.1016/j.chemosphere.2020.127613.

Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N., et al. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946.

Antimicrobial resistance. (accessed on 21 November 2023) Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

Vieira, L.R., Soares, A.M.V.M., Freitas, R. (2022). Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. Chemosphere, 286, 131675. https://doi.org/10.1016/j.chemosphere.2021.131675.

Temple, J.L., Bernard, C., Lipshultz, S.E., Czachor, J.D., Westphal, J.A., Mestre, M.A. (2017). The safety of ingested caffeine: A comprehensive review. Frontiers in Psychiatry, 8, 80. https://doi.org/10.3389/fpsyt.2017.00080.

Rehberger, K., Wernicke von Siebenthal, E., Bailey, C., Bregy, P., Fasel, M., Herzog, E. L., Neumann, S., Schmidt-Posthaus, H., Segner, H. (2020). Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout (Oncorhynchus mykiss). Environment International, 142, 105836. https://doi.org/10.1016/j.envint.2020.105836.

Kidd, K.A.; Blanchfield, P.J.; Mills, K.H.; et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104, 8897. https://doi.org/10.1073/PNAS.0609568104.

Borsetto, C.; Raguideau, S.; Travis, E.; Kim, D. W.; Lee, D. H.; Bottrill, A.; Stark, R.; Song, L., et al. (2021). Impact of sulfamethoxazole on a riverine microbiome. Water Research, 201, 117382. https://doi.org/10.1016/J.WATRES.2021.117382.

Zhou, J., Yun, X., Wang, J., Li, Q., Wang, Y. (2022). A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicology Reports, 9, 534–540. https://doi.org/10.1016/j.toxrep.2022.03.034.

Karimi, K.J.; Ngumba, E.; Ahmad, A.; et al. (2023). Contamination of groundwater with sulfamethoxazole and antibiotic resistant Escherichia coli in informal settlements in Kisumu, Kenya. PLOS Water, 2, e0000076. https://doi.org/10.1371/JOURNAL.PWAT.0000076.

Sandré, F., Duval, A., Garrigue-Antar, L. (2025). From pharmaceuticals to toxic threats: Unveiling the impact of furosemide and by-products on fish model. Aquatic Toxicology, 286, 107455. https://doi.org/10.1016/j.aquatox.2025.107455.

Isidori, M.; Nardelli, A.; Parrella, A.; Pascarella, L.; Previtera, L. (2006). A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: Furosemide and its photoproduct. Chemosphere, 63, 785–793. https://doi.org/10.1016/J.CHEMOSPHERE.2005.07.078.

Khan, T.M.; Patel, R.; Siddiqui, A.H. (2023). Furosemide. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK499921/.

Vo, H.N.P., Le, G.K., Nguyen, T.M.H., Bui, X.T., Nguyen, K.H., Rene, E.R., Vo, T.D.H., Cao, N. D.T., Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236, 124391. https://doi.org/10.1016/j.chemosphere.2019.124391.

Liang, Y. Q.; Xu, W.; Liang, X.; et al. (2020). The synthetic progestin norethindrone causes thyroid endocrine disruption in adult zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 236, 108819. https://doi.org/10.1016/J.CBPC.2020.108819.

Dong, Z.; Li, X.; Chen, Y.; Zhang, N.; Wang, Z.; Liang, Y. Q.; Guo, Y. (2023). Short-term exposure to norethisterone affected swimming behavior and antioxidant enzyme activity of medaka larvae, and led to masculinization in the adult population. Chemosphere, 310, 136844. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136844.

Fent, K. (2015). Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. Environment International, 84, 115–130. https://doi.org/10.1016/J.ENVINT.2015.06.012.

Fennell, D.E.; Du, S.; Liu, F.; Liu, H.; Häggblom, M.M. (2011). Dehalogenation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans, Polychlorinated Biphenyls, and Brominated Flame Retardants, and Potential as a Bioremediation Strategy. Comprehensive Biotechnology, 6, 135–149. https://doi.org/10.1016/B978-0-08-088504-9.00369-X.

Hanafiah, Z.M., Mohtar, W.H.M., Wan Mohtar, W.A.A.Q.I., Bithi, A.S., Rohani, R., Indarto, A., Yaseen, Z. M., Sharil, S., Binti Abdul Manan, T.S. (2024). Removal of pharmaceutical compounds and toxicology study in wastewater using Malaysian fungal Ganoderma lucidum. Chemosphere, 358, 142209. https://doi.org/10.1016/J.CHEMOSPHERE.2024.142209.

Sayed, K., Melini, W.H., Mohtar, W., Hanafiah, Z.M., Sultana Bithi, A., Abd, W., Qadr, A., Wan-Mohtar, I. (2024). Removal of pharmaceuticals from municipal wastewater using Malaysian Ganoderma lucidum fungal strain. Jurnal Kejuruteraan, 36(4), 1467–1476. https://doi.org/10.17576/jkukm-2024-36(4)-12.

Saeed, M.U., Hussain, N., Sumrin, A., Shahbaz, A., Noor, S., Bilal, M., Aleya, L., Iqbal, H. M. N. (2022). Microbial bioremediation strategies with wastewater treatment potentialities – A review. Science of the Total Environment, 818, 151754. https://doi.org/10.1016/j.scitotenv.2021.151754.

Liu, T.; Aniagor, C.O.; Ejimofor, M.I.; et al. (2023). Technologies for removing pharmaceuticals and personal care products. Journal of Molecular Liquids, 374, 121144. https://doi.org/10.1016/J.MOLLIQ.2022.121144.

Firmansyah, M.L.; Alwan, Y.; Ullah, N. (2025). A comprehensive review on the adsorptive removal of pharmaceutical pollutants: Occurrence, toxicology, molecular simulation and mechanistic insights. Talanta Open, 12, 100491. https://doi.org/10.1016/J.TALO.2025.100491.

Ji, X.; Zhu, M.; Li, M.; et al. (2023). Adsorption and Degradation of Organics in Wastewater on Municipal Sludge. ACS Omega, 8, 33349–33357. https://doi.org/10.1021/ACSOMEGA.3C02765.

Rosman, N., Salleh, W.N.W., Mohamed, M.A., Jaafar, J., Ismail, A.F., Harun, Z. (2018). Hybrid membrane filtration–advanced oxidation processes for removal of pharmaceutical residue. Journal of Colloid and Interface Science, 532, 236–260. https://doi.org/10.1016/j.jcis.2018.07.118.

Krishnan, K.; Yap, C.K.; Hew, T.Y.A.; et al. (2025). Public Awareness of Drinking Water Safety and Contamination Issues in Selangor. Natural and Engineering Sciences, 10, 209–230. https://doi.org/10.28978/NESCIENCES.1561096.

Ariffin, M. (2024). Regulatory Gaps in Pharmaceutical Waste Management: A Case Study of Malaysia. International Journal of Research and Innovation in Social Science, VIII, 813–820. https://doi.org/10.47772/IJRISS.2024.8100066.

About this article

SUBMITTED: 26 October 2025
ACCEPTED: 17 January 2026
PUBLISHED: 20 January 2026
SUBMITTED to ACCEPTED: 83 days
DOI: https://doi.org/10.53623/idwm.v6i1.869

Cite this article
Kiranparahita, E. A. ., Rahman, N. A. ., & Mwangi, J. (2026). Occurrence, Risks, and Treatment of Pharmaceutical Contaminants in Malaysia’s Aquatic Systems. Industrial and Domestic Waste Management, 6(1), 1–14. https://doi.org/10.53623/idwm.v6i1.869
Keywords
Accessed
100
Citations
0
Share this article