The objective of this study is to develop effective chemical treatment methods to break down stubborn pharmaceutical pollutants in contaminated soil, enhancing its quality and reducing environmental risks. Numerous pharmaceuticals, which are substances used to cure or prevent illnesses in both humans and animals, are classified as pollutants of increasing concern because of their extensive environmental dispersion and their negative effects on populations. This is due to the constant discharge of sludge and effluent from wastewater treatment plants, which happens far more quickly than the removal of pharmaceuticals; they are frequently discovered in soils at considerable concentrations. Conventional wastewater treatment is unable to effectively remove pharmaceuticals from influent streams or biosolids, despite the fact that they are often present at low ambient quantities. Furthermore, through surface runoff and leaching, the application of animal manure to the soil can cause pharmaceuticals to contaminate the soil. Adsorption to soil colloids and degradation through the soil profile are some of the mechanisms that influence the behaviour and fate of pharmaceuticals in soils. The primary factor influencing how much organic matter is absorbed by plant roots is the sorption of pharmaceuticals in soils. This pharmaceutical pollutant in contaminated soil can lead to a negative impact on human and soil health. Therefore, remediation techniques such as chemical oxidation, soil washing, bioremediation, and phytoremediation should be used to reduce the pharmaceutical pollutants in the contaminated soil.
Abdallat, G.A.; Salameh, E.; Shteiwi, M.; Bardaweel, S. (2022). Pharmaceuticals as emerging pollutants in the reclaimed wastewater used in irrigation and their effects on plants, soils, and groundwater. Water 14(10), 1560. https://doi.org/10.3390/w14101560.
Mosharaf, M.K.; Gomes, R.L.; Cook, S.; Alam, M.S.; Rasmusssen, A. (2024). Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere, 364, 143055–143055. https://doi.org/10.1016/j.chemosphere.2024.143055.
Pérez-Lucas, G.; Navarro, S. (2024). How pharmaceutical residues occur, behave, and affect the soil environment. Journal of Xenobiotics, 14(4), 1343–1377. https://doi.org/10.3390/jox14040076.
Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. (2021). Pharmaceuticals in the Soil and Plant Environment: a Review. Water, Air, & Soil Pollution, 232(4). https://doi.org/10.1007/s11270-020-04954-8.
Carter, L.J.; Ryan, J.J.; Boxall, A.B.A. (2016). Effects of soil properties on the uptake of pharmaceuticals into earthworms. Environmental Pollution 213, 922–931. https://doi.org/10.1016/j.envpol.2016.03.044.
Gautham, D.; Liu, X.; Balu, R.; Ayyamperumal, R.; Arasu, M.V.; Lavanya, M.; Vasudeva; Kim, W.K.; Karthika, P.C. (2024). Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. Environmental Research 118404, 1–20. https://doi.org/10.1016/j.envres.2024.118404.
Ghazal, H. (2023). Pharmaceuticals contamination in the environment. Environmental Toxicology and Pharmacology, 103, 104251. https://doi.org/10.1016/j.etap.2023.104251.
Li, W.C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193–201. https://doi.org/10.1016/j.envpol.2014.01.015.
Vatovec, C.; Kolodinsky, J.; Callas, P.; Hart, C.; Gallagher, K. (2021). Pharmaceutical pollution sources and solutions: Survey of human and veterinary medication purchasing, use, and disposal. Journal of Environmental Management, 285, 112106. https://doi.org/10.1016/j.jenvman.2021.112106.
Nguyen, M.-K.; Lin, C.; Nguyen, H.-L.; Hung, N.T.Q.; Duong La, D.; Nguyen, X.H.; Woong Chang, S.; Chung, W.J.; Duc Nguyen, D. (2023). Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. Science of the Total Environment, 899, 165323–165323. https://doi.org/10.1016/j.scitotenv.2023.165323.
Biel-Maeso M.; Corada-Fernández, C.; Lara-Martín, P.A. (2018). Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environmental Pollution 235, 312–321. https://doi.org/10.1016/j.envpol.2017.12.085.
Zhang, C.; Barron, L.; Sturzenbaum, S. (2021). The transportation, transformation and (bio)accumulation of pharmaceuticals in the terrestrial ecosystem. Science of the Total Environment, 781, 146684. https://doi.org/10.1016/j.scitotenv.2021.146684.
Salvia, M.-V.; Experton, J.; Geandel, C.; Cren-Olivé, C.; Vulliet, E. (2014). Fate of pharmaceutical compounds and steroid hormones in soil: study of transfer and degradation in soil columns. Environmental Science and Pollution Research, 21(17), 10525–10535. https://doi.org/10.1007/s11356-014-3038-x.
Chacón, L.; Reyes, L.; Rivera-Montero, L.; Barrantes, K. (2022). Transport, fate, and bioavailability of emerging pollutants in soil, sediment, and wastewater treatment plants: potential environmental impacts. Elsevier EBooks, 111–136. https://doi.org/10.1016/b978-0-323-85160-2.00020-2
Aryal, N.; Wood, J.; Rijal, I.; Deng, D.; Jha, M.K.; Ofori‐Boadu, A. (2020). Fate of environmental pollutants: A review. Water Environment Research 92(10), 1587–1594. https://doi.org/10.1002/wer.1404.
Bolesta, W.; Głodniok, M.; Styszko, K. (2022). From sewage sludge to the soil—transfer of pharmaceuticals: A review. International Journal of Environmental Research and Public Health 19(16), 10246. https://doi.org/10.3390/ijerph191610246.
Verlicchi, P.; Zambello, E. (2015). Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil — A critical review. Science of the Total Environment, 538, 750–767. https://doi.org/10.1016/j.scitotenv.2015.08.108.
Aydın, S.; Ulvi, A.; Bedük, F.; Aydın, M.E. (2022). Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil. Science of the Total Environment 817, 152864. https://doi.org/10.1016/j.scitotenv.2021.152864.
Borgman, O.; Chefetz, B. (2013). Combined effects of biosolids application and irrigation with reclaimed wastewater on transport of pharmaceutical compounds in arable soils. Water Research 47(10), 3431–3443. https://doi.org/10.1016/j.watres.2013.03.045
Shahsavari, E.; Rouch, D.; Khudur, L.S.; Thomas, D.; Aburto-Medina, A.; Ball, A.S. (2021). Challenges and current status of the biological treatment of PFAS-contaminated soils. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.602040.
Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023
Che Lat. D.; Mat Yusof, D.A.; Yasin, M.H.; Mohd Noor, S.N.A.; A Rahman, N.S.; Razali, R. (2023). Effect of soil contamination on human health and environment with preventive measures: A review. Construction 3(1), 142–151. https://doi.org/10.15282/construction.v3i1.9404.
Münzel, T. (2022). Soil and water pollution and human health: what should cardiologists worry about? Cardiovascular Research, 119(2). https://doi.org/10.1093/cvr/cvac082.
Cabana, L.A.; Santiago-Martín, A.de; Meffe, R.; López-Heras, I.; Bustamante, I.de. (2024). Pharmaceutical and trace metal interaction within the water–soil–plant continuum: Implications for human and soil health. Toxics 12(7), 457. https://doi.org/10.3390/toxics12070457.
Gutiérrez, C.; Fernández, C.; Escuer, M.; Campos-Herrera, R.; BeltránRodríguez, M.E.; Carbonell, G.; RodríguezMartín, J.A. (2016). Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environmental Pollution, 213, 184–194. https://doi.org/10.1016/j.envpol.2016.02.012.
Frkova, Z.; Vystavna, Y.; Koubová, A.; Kotas, P.; Grabicová, K.; Grabic, R.; Kodešová, R.; Chroňáková, A. (2020). Microbial responses to selected pharmaceuticals in agricultural soils: Microcosm study on the roles of soil, treatment and time. Soil Biology & Biochemistry, 149, 107924–107924. https://doi.org/10.1016/j.soilbio.2020.107924
Carter, L.J.; Harris, E.; Williams, M.; Ryan, J.J.; Kookana, R.S.; Boxall, A.B.A. (2014). Fate and uptake of pharmaceuticals in soil–plant systems. Journal of Agricultural and Food Chemistry 62(4), 816–825. https://doi.org/10.1021/jf404282y.
Rao, M.N.; Sultana, R.; Kota, S.H. (2017). Hazardous waste. Solid and Hazardous Waste Management, 159–207. https://doi.org/10.1016/b978-0-12-809734-2.00005-5.
Bolan, N.; Makino, T.; Kunhikrishnan, A.; Kim, P.J.; Ishikawa, S.; Murakami, M.; Naidu, R.; Kirkham,M.B. (2013). Cadmium contamination and its risk management in rice ecosystems. Advances in Agronomy, 183–273. https://doi.org/10.1016/b978-0-12-407247-3.00004-4.
Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10, 484. https://doi.org/10.3390/toxics10080484.
Chibwe, L.; Geier, M.C.; Nakamura, J.; Tanguay, R.L.; Aitken, M.D.; Simonich, S.L.M. (2015). Aerobic bioremediation of PAH contaminated soil results in increased genotoxicity and developmental toxicity. Environmental Science & Technology 49(23), 13889–13898. https://doi.org/10.1021/acs.est.5b00499.
Chakraborty, S.C.; Qamruzzaman, M.; Zaman, M.W.U.; Alam, M.M.; Hossain, D.; Pramanik, B.K.; Nguyen, L.N.; Nghiem, L.D.; Ahmed, M.F.; Zhou, J.L.; Mondal, Md.I.H.; Hossain, M.A.; Johir, M.A.H.; Ahmed, M.B.; Sithi, J.A.; Zargar, M.; Moni, M.A. (2022). Metals in e-waste: Occurrence, fate, impacts and remediation technologies. Process Safety and Environmental Protection 162, 82–97. https://doi.org/10.1016/j.psep.2022.04.011.
Jeevanantham, S.; Saravanan, A.; Hemavathy, R.V.; Kumar, P.S.; Yaashikaa, P.R.; Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environmental Technology & Innovation, 13, 264–276. https://doi.org/10.1016/j.eti.2018.12.007.
Samborska-Goik, K.; Ulańczyk, R.; Krupanek, J.; Pogrzeba, M. (2024). A PHREEQC-Based Tool for Planning and Control of In Situ Chemical Oxidation Treatment. Applied Sciences, 14, 3600. https://doi.org/10.3390/app14093600.
Besha, A.T.; Bekele, D.N.; Naidu, R.; Chadalavada, S. (2018). Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environmental Technology & Innovation 9, 303–322. https://doi.org/10.1016/j.eti.2017.08.004.
Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. (2015). Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–156. https://doi.org/10.1016/j.nbt.2014.01.001.
Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. 2010. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry 399(1), 251–275. https://doi.org/10.1007/s00216-010-4300-9.
SUBMITTED: 30 May 2025
ACCEPTED: 24 June 2025
PUBLISHED:
26 June 2025
SUBMITTED to ACCEPTED: 25 days
DOI:
https://doi.org/10.53623/idwm.v5i1.710