The rapid growth of the human population and industrial activities has resulted in considerable environmental degradation. Processes such as industrialization, mining, agriculture, and waste disposal introduce harmful chemicals that contaminate soil, groundwater, and surface waters. Consequently, soil remediation has become a critical priority for many nations, given that soil quality directly affects agriculture and public health. Nanotechnology presents promising solutions to the shortcomings of traditional soil remediation methods by offering innovative materials and mechanisms for the removal or neutralization of contaminants. This review intends to evaluate the use of nanotechnology in soil remediation, emphasizing the nanomaterials employed, their reaction mechanisms, and potential environmental effects. Nanomaterials like nano zero-valent iron, metal oxides, and carbon-based materials have shown effectiveness in immobilizing, degrading, or extracting pollutants from soil and water through processes such as adsorption, photocatalysis, and filtration. However, certain nanomaterials raise concerns about toxicity and bioaccumulation, which may negatively affect ecosystems and human health. Therefore, additional research is needed to confirm the safety, compatibility, and sustainability of these technologies. This review also identifies significant challenges in the implementation of nanotechnologies for soil remediation and examines future directions and recommendations for addressing these challenges.
Qian, Y.; Qin, C.; Chen, M.; Lin, S. (2020). Nanotechnology in soil remediation − applications vs. implications. Ecotoxicology and Environmental Safety, 201, 110815. https://doi.org/10.1016/j.ecoenv.2020.110815.
Carrillo‐González, R.; Šimůnek, J.; Sauvé, S.; Adriano, D. (2006). Mechanisms and pathways of trace element mobility in soils. Advances in Agronomy, 91, 111–178. https://doi.org/10.1016/S0065-2113(06)91003-7.
Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865.
Makino, T.; Kamiya, T.; Takano, H.; Itou, T.; Sekiya, N.; Sasaki, K.; Sugahara, K. (2007). Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: Verification of on-site washing. Environmental Pollution, 147(1), 112–119. https://doi.org/10.1016/j.envpol.2006.08.037.
Wang, H.; Liang, X.; Wang, J.; Jiao, S.; Xue, D. (2020). Multifunctional inorganic nanomaterials for energy applications. Nanoscale, 12(1), 14-42.
Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49(2), 750–759. https://doi.org/10.1021/es5047099.
Ekrami, E.; Pouresmaieli, M.; Hashemiyoon, E.S.; Noorbakhsh, N.; Mahmoudifard, M. (2022). Nanotechnology: A sustainable solution for heavy metals remediation. Environmental Nanotechnology, Monitoring & Management, 18, 100718. https://doi.org/10.1016/j.enmm.2022.100718.
Alidokht, L.; Anastopoulos, I.; Ntarlagiannis, D.; Soupios, P.; Tawabini, B.; Kalderis, D.; Khataee, A. (2021). Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil. Journal of Environmental Chemical Engineering, 9(4), 105533. https://doi.org/10.1016/j.jece.2021.105533.
Kumar Das, P.; Mohanty, C.; Krishna Purohit, G.; Mishra, S.; Palo, S. (2022). Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environmental Nanotechnology, Monitoring & Management, 18, 100679. https://doi.org/10.1016/j.enmm.2022.100679.
Gonçalves, J. R. (2016). The soil and groundwater remediation with zero valent iron nanoparticles. Procedia Engineering, 143, 1268–1275. https://doi.org/10.1016/j.proeng.2016.06.122.
Ahmed, T.; Noman, M.; Ijaz, M.; Ali, S.; Rizwan, M.; Ijaz, U.; Li, B. (2021). Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture. Ecotoxicology and Environmental Safety, 227, 112888. https://doi.org/10.1016/j.ecoenv.2021.112888.
Liu, Y.; Chen, H.; Zhu, N.; Zhang, J.; Li, Y.; Xu, D.; Zhao, J. (2022). Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environmental Pollution, 293, 118557. https://doi.org/10.1016/j.envpol.2021.118557.
Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S. A.; Rehman, H.U.; Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778.
Wang, Q.; Guo, S.; Ali, M.; Song, X.; Tang, Z.; Zhang, Z.; Luo, Y. (2022). Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. Journal of Hazardous Materials, 433, 128749. https://doi.org/10.1016/j.jhazmat.2022.128749.
Lisha, K.; Pradeep, T. (2009). Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bulletin, 42(2), 144–152. http://doi.org/10.1007/BF03214924.
Guerra, F.D.; Campbell, M.L.; Whitehead, D.C.; Alexis, F. (2017). Tunable properties of functional nanoparticles for efficient capture of VOCs. ChemistrySelect, 2(31), 9888–9888. http://doi.org/10.1002/slct.201702287.
Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K. (2019). Nanotechnology-based water quality management for wastewater treatment. Environmental Chemistry Letters, 17(1), 65–121. http://doi.org/10.1007/s10311-018-0778-8.
Jun, L.Y.; Mubarak, N.M.; Yee, M.J.; Yon, L.S.; Bing, C.H.; Khalid, M.; Abdullah, E.C. (2018). An overview of functionalised carbon nanomaterial for organic pollutant removal. Journal of Industrial and Engineering Chemistry, 67, 175-186. https://doi.org/10.1016/j.jiec.2018.06.028.
Das, P.K. (2018). Phytoremediation and nanoremediation: Emerging techniques for treatment of acid mine drainage water. Defence Life Science Journal, 3(2), 190–196.
Alharbi, N.S.; Hu, B.; Hayat, T.; Rabah, S.O.; Alsaedi, A.; Zhuang, L.; Wang, X. (2020). Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 14(6), 1124–1135. https://doi.org/10.1007/s11705-020-1923-z.
Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286, 640–662. http://doi.org/10.1016/j.cej.2015.10.105.
Artioli, Y. (2008). Adsorption. In Encyclopedia of Ecology; Jørgensen S.E., Fath, B.D., Eds.; Academic Press: Cambridge, USA, pp. 60–65. http://doi.org/10.1016/B978-008045405-4.00252-4.
Tan, K.B.; Vakili, M.; Horri, B.A.; Poh, P.E.; Abdullah, A.Z.; Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology, 150, 229–242. http://doi.org/10.1016/j.seppur.2015.07.009.
Lakshmi, S.D.; Avti, P.K.; Hegde, G. (2018). Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review. Nano-Structures & Nano-Objects, 16, 306–321. http://doi.org/10.1016/j.nanoso.2018.08.001.
Aghabeygi, S.; Khademi-Shamami, M. (2018). ZnO/ZrO2 nanocomposite: Sonosynthesis, characterization and its application for wastewater treatment. Ultrasonics Sonochemistry, 41, 458–465. http://doi.org/10.1016/j.ultsonch.2017.09.020.
Mazarji, M.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Bidhendi, G.N.; Barakhov, A.; Bhatnagar, A. (2021). Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. Journal of Environmental Management, 284, 112023. http://doi.org/10.1016/j.jenvman.2021.112023.
Fu, F.; Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. http://doi.org/10.1016/j.jenvman.2010.11.011.
Deng, R.; Lin, D.; Zhu, L.; Majumdar, S.; White, J.C.; Gardea-Torresdey, J.L.; Xing, B. (2017). Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 11(5), 591–612. http://doi.org/10.1080/17435390.2017.1343404.
Zhang, Z.; Ke, M.; Qu, Q.; Peijnenburg, W.J.G.M.; Lu, T.; Zhang, Q.; Qian, H. (2018). Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution, 239, 689–697. http://doi.org/10.1016/j.envpol.2018.04.066.
Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96–111. http://doi.org/10.1016/j.taap.2017.05.025.
Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Iqbal, H.M.N. (2022). In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air – A review. Chemosphere, 289, 133252. http://doi.org/10.1016/j.chemosphere.2021.133252.
Lashen, Z.M.; Shams, M.S.; El-Sheshtawy, H.S.; Slaný, M.; Antoniadis, V.; Yang, X.; Elmahdy, S. M. (2022). Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. Journal of Hazardous Materials, 428, 128205. http://doi.org/10.1016/j.jhazmat.2021.128205.
Yadav, N.; Garg, V.K.; Chhillar, A.K.; Rana, J.S. (2021). Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. Chemosphere, 280, 130792. http://doi.org/10.1016/j.chemosphere.2021.130792.
Kumar, N.; Kandasami, R.K.; Singh, S. (2022). Effective utilization of natural fibres (coir and jute) for sustainable low-volume rural road construction – A critical review. Construction and Building Materials, 347, 128606. http://doi.org/10.1016/j.conbuildmat.2022.128606.
Mishra, M.; Dashora, K.; Srivastava, A.; Fasake, V.D.; Nag, R.H. (2019). Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicology and Environmental Safety, 171, 677–682. http://doi.org/10.1016/j.ecoenv.2018.12.085.
SUBMITTED: 04 November 2024
ACCEPTED: 05 December 2024
PUBLISHED:
6 December 2024
SUBMITTED to ACCEPTED: 31 days
DOI:
https://doi.org/10.53623/idwm.v4i2.534