Skip to main content

Sustainable Water Management Strategies for Mitigating Pesticide Pollution in Urban and Agricultural Areas

Author(s): Audrey Primus 1 ORCID https://orcid.org/0000-0001-5314-5674 , Aimie Peace Siganul 1 , Nikita Emalya 2 , Cut Yusnar 3 ORCID https://orcid.org/0009-0000-3575-9074 , Yureana Wijayanti 4 ORCID https://orcid.org/0000-0002-9341-9681 , Rubiyatno 5 ORCID https://orcid.org/0000-0001-6877-5150 , Rega Permana 6 , 7 , ORCID https://orcid.org/0000-0002-9044-6721 , Sang Hyeok Park 8 ORCID https://orcid.org/0000-0002-9450-2639 , Ocean Thakali 9 ORCID https://orcid.org/0000-0002-6649-2322 , Corry Aina 10 , 11 , ORCID https://orcid.org/0009-0003-9438-5406 , Ni Putu Sri Wahyuningsih 10 , 11 , ORCID https://orcid.org/0009-0001-0159-2509 , Nii Amarquaye Commey 5 ORCID https://orcid.org/0000-0002-9139-0379
Author(s) information:
1 Facuty of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
2 School of Engineering and Digital Science, Qabanbay Batyr Ave 53, Astana 010000, Kazakhstan
3 Department of Civil Engineering, Lhokseumawe State Polytechnic, Lhokseumawe 24301, Indonesia
4 Department of Civil Engineering, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
5 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
6 School of Geography, Earth and Environmental Science, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
7 Universitas Padjadjaran, Faculty of Fisheries and Marine Science, Raya Bandung Sumedang Street KM. 21 Jatinangor, Sumedang, 45363, Indonesia
8 Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
9 Center for research excellence in wastewater-based epidemiology, Morgan State University, Baltimore, Maryland, USA
10 Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
11 Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan

Corresponding author

The indiscriminate use of pesticides in Malaysian agriculture poses serious risks to both human health and groundwater quality.This study aims to evaluate the extent of pesticide contamination in Malaysian groundwater, identify its major sources, and examine current mitigation efforts. The primary routes of contamination include direct application, soil leaching, and surface runoff, with over twenty pesticide compounds listed as priority hazardous substances, commonly linked to oil palm, rice, and vegetable farming. Residential and industrial activities also contribute to the pollutant load. Due to their long environmental persistence, pesticides threaten aquatic ecosystems through bioaccumulation and biomagnification and increase the risk of severe health issues, including neurological disorders, reproductive problems, and cancer. Regulatory controls such as exposure limits and monitoring programs have been implemented to manage these risks. This review concludes that while regulatory mechanisms exist, more robust and proactive approaches are needed to mitigate groundwater contamination. Future efforts should focus on expanding the adoption of sustainable farming practices, strengthening groundwater monitoring, and enhancing regulatory enforcement to ensure long-term environmental and public health protection.

Andrew, J.; Ismail, N.W.; Djama, M. (2017). An overview of genetically modified crop governance, issues and challenges in Malaysia. Journal of the Science of Food and Agriculture, 98(1), 12–17. https://doi.org/10.1002/jsfa.8666.

Devadason, E.S.; Chandran, V.; Kalirajan, K. (2018). Harmonization of food trade standards and regulations in ASEAN: the case of Malaysia’s food imports. Agricultural Economics, 49(1), 97–109. https://doi.org/10.1111/agec.12398.

Sass, J.B.; Colangelo, A. (2006). European Union bans atrazine, while the United States negotiates continued use. International Journal of Occupational and Environmental Health, 12(3), 260–267. https://doi.org/10.1179/oeh.2006.12.3.260.

Mogaji, K.A.; Lim, H.S. (2018). Development of groundwater favourability map using GIS-based driven data mining models: an approach for effective groundwater resource management. Geocarto International, 33(4), 397–422. https://doi.org/10.1080/10106049.2016.1273400.

Loague, K.; Corwin, D.L. (2005). Point and non point source pollution. Encyclopedia of Hydrological Sciences. https://doi.org/10.1002/0470848944.hsa097.

Barrow, C.J.; Chan, N.W.; Masron, T.B. (2010). Farming and other stakeholders in a tropical highland: Towards less environmentally damaging and more sustainable practices. Journal of Sustainable Agriculture, 34(4), 365–388. https://doi.org/10.1080/10440041003680205.

Hernández, F.; Marín, J.M.; Pozo, Ó.J.; Sancho, J.V.; López, F.J.; Morell, I. (2008). Pesticide residues and transformation products in groundwater from a Spanish agricultural region on the Mediterranean Coast. International Journal of Environmental Analytical Chemistry, 88(6), 409–424. https://doi.org/10.1080/03067310701724772.

Bhat, V.N. (2005). Polluting facilities and environmental justice – a study. International Journal of Environmental Studies, 62(1), 5–13. https://doi.org/10.1080/00207230290011508a.

Esen, F. (2013). Development of a passive sampling device using Polyurethane Foam (PUF) to measure Polychlorinated Biphenyls (PCBs) and Organochlorine Pesticides (OCPs) near landfills. Environmental Forensics, 14(1), 1–8. https://doi.org/10.1080/15275922.2012.729008.

Matsuo, Y.; Nakata, H.; Agusa, T.; Miyawaki, T.; Kadokami, K.; Sato, K.; Matsumoto, M.; Higuchi, T.; Nishimuta, K.; Ryuda, N.; Miyamoto, H.; Haraguchi, T.; Ueno, D. (2020). Comprehensive target analysis of micropollutants in soil at debris storage sites of the Kumamoto earthquake. Soil and Sediment Contamination: An International Journal, 29(4), 452–463. https://doi.org/10.1080/15320383.2020.1738336.

Blankenberg, A.-G.B.; Braskerud, B.; Haarstad, K. (2006). Pesticide retention in two small constructed wetlands: treating non-point source pollution from agriculture runoff. International Journal of Environmental Analytical Chemistry, 86(3–4), 225–231. https://doi.org/10.1080/03067310500247470.

Raffar, N.; Zulkafli, Z.; Yiwen, M.; Muharam, F.M.; Rehan, B.M.; Nurulhuda, K. (2022). Watershed-scale modelling of the irrigated rice farming system at Muda, Malaysia, using the Soil Water Assessment Tool. Hydrological Sciences Journal, 67(3), 462–476. https://doi.org/10.1080/02626667.2021.2022682.

Zou, N.; Gu, K.; Liu, S.; Hou, Y.; Zhang, J.; Xu, X.; Li, X.; Pan, C. (2016). Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry. Journal of Separation Science, 39(6), 1202–1212. https://doi.org/10.1002/jssc.201501258.

Jiang, W.; Luo, Y.; Conkle, J.L.; Li, J.; Gan, J. (2015). Pesticides on residential outdoor surfaces: environmental impacts and aquatic toxicity. Pest Management Science, 72(7), 1411–1420. https://doi.org/10.1002/ps.4168.

Ndlovu, N.N.; Little, K.; Baillie, B.; Rolando, C. (2022). An evaluation of the environmental behaviour, fate and risk of key pesticides used in South African forest plantations. Southern Forests: a Journal of Forest Science, 84(1), 83–92. https://doi.org/10.2989/20702620.2022.2045879.

Li, Z.; Lin, T.; Li, Y.; Jiang, Y.; Guo, Z. (2017). Atmospheric deposition and air‐sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea. Journal of Geophysical Research: Atmospheres, 122(14), 7664–7677. https://doi.org/10.1002/2016jd026330.

Gao, Y.; Zheng, H.; Xia, Y.; Chen, M.; Meng, X.; Cai, M. (2019). Spatial distributions and seasonal changes of current‐use pesticides from the North Pacific to the Arctic Oceans. Journal of Geophysical Research: Atmospheres, 124(16), 9716–9729. https://doi.org/10.1029/2018jd030186.

Briceño, G.; Palma, G.; Durán, N. (2007). Influence of organic amendment on the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, 37(3), 233–271. https://doi.org/10.1080/10643380600987406.

Pérez-Lucas, G.; el Aatik, A.; Vela, N.; Fenoll, J.; Navarro, S. (2020). Exogenous organic matter as strategy to reduce pesticide leaching through the soil. Journal of Environmental Quality, 67(7), 934–945. https://doi.org/10.1080/03650340.2020.1768531.

Perera-Rios, J.; Ruiz-Suarez, E.; Bastidas-Bastidas, P. de J.; May-Euán, F.; Uicab-Pool, G.; Leyva-Morales, J. B.; Reyes-Novelo, E.; Pérez-Herrera, N. (2022). Agricultural pesticide residues in water from a karstic aquifer in Yucatan, Mexico, pose a risk to children’s health. International Journal of Environmental Health Research, 32(10), 2218–2232. https://doi.org/10.1080/09603123.2021.1950652.

Zhong, G.; Tang, J.; Xie, Z.; Möller, A.; Zhao, Z.; Sturm, R.; Chen, Y.; Tian, C.; Pan, X.; Qin, W.; Zhang, G.; Ebinghaus, R. (2014). Selected current‐use and historic‐use pesticides in air and seawater of the Bohai and Yellow Seas, China. Journal of Geophysical Research: Atmospheres, 119(2), 1073–1086. https://doi.org/10.1002/2013JD020951.

Gevaert, V.; Van Griensven, A.; Holvoet, K.; Seuntjens, P.; Vanrolleghem, P.A. (2008). SWAT developments and recommendations for modelling agricultural pesticide mitigation measures in river basins. Hydrological Sciences Journal, 53(5), 1075–1089. https://doi.org/10.1623/hysj.53.5.1075.

Eleftheriadou, D.; Luette, S.; Kneuer, C. (2019). In silico prediction of dermal absorption of pesticides – an evaluation of selected models against results from in vitro testing. SAR and QSAR in Environmental Research, 30(8), 561–585. https://doi.org/10.1080/1062936x.2019.1644533.

Cardenas, S.; Márquez, A.; Guevara, E. (2021). Diffusion–advection process modeling of organochlorine pesticides in rivers. Journal of Applied Water Engineering and Research, 11(1), 1–22. https://doi.org/10.1080/23249676.2021.1982029.

Khosravi, F.; Jha-Thakur, U. (2018). Managing uncertainties through scenario analysis in strategic environmental assessment. Journal of Environmental Planning and Management, 61(5), 1–22. https://doi.org/10.1080/09640568.2018.1456913.

Frelih‐Larsen, A.; Chivers, C.; Herb, I.; Mills, J.; Reed, M. (2023). The role of public consultations in decision-making on future agricultural pesticide use: insights from European Union’s Farm to Fork Strategy public consultation. Journal of Environmental Policy & Planning, 25(4), 476–492. https://doi.org/10.1080/1523908x.2023.2212369.

Alslaibi, T.M.; Abunada, Z.; Abu Amr, S.S.; Abustan, I. (2017). Risk assessment of nitrate transport through subsurface layers and groundwater using experimental and modeling approach. Environmental Technology, 39(21), 2691–2702. https://doi.org/10.1080/09593330.2017.1365936.

Shrestha, S.; Shrestha, S. (2014). Evaluation of the PESTFADE model using field-measured data from a sprinkler-irrigated soybean field in Pathumthani, Thailand. Journal of Applied Water Engineering and Research, 2(1), 57–69. https://doi.org/10.1080/23249676.2014.932719.

Thu, T.; Everaarts, A.P.; Neeteson, J.J.; Struik, P.C. (2013). Vegetable production in the Red River Delta of Vietnam. II. Profitability, labour requirement and pesticide use. NJAS Wageningen Journal of Life Sciences, 67(1), 37–46. https://doi.org/10.1016/j.njas.2013.09.003.

Tomer, S. K.; Sekhar, M.; Balakrishnan, K.; Malghan, D.; Thiyaku, S.; Gautam, M.; Mehta, V. K. (2021). A model-based estimate of the groundwater budget and associated uncertainties in Bengaluru, India. Urban Water Journal, 18(1), 1–11. https://doi.org/10.1080/1573062X.2020.1836237.

Zhao, Y.Q.; Singleton, P.; Meredith, S.; Rennick, G.W. (2013). Current status of pesticides application and their residue in the water environment in Ireland. International Journal of Environmental Studies, 70(1), 59–72. https://doi.org/10.1080/00207233.2012.752557.

Gao, H.; Ma, J.; Cao, Z.; Dove, A.; Zhang, L. (2010). Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes. Journal of Geophysical Research, 115(D15). https://doi.org/10.1029/2009jd013627.

Conde-Avila, V.; Ortega-Martínez, L. D.; Loera, O.; El Kassis, E. G.; Dávila, J. G.; Valenzuela, C. M.; Armendáriz, B. P. (2021). Pesticides degradation by immobilised microorganisms. International Journal of Environmental Analytical Chemistry, 101(15), 2975–3005. https://doi.org/10.1080/03067319.2020.1715375.

Casas López, J.L.; Cabrera‐Reina, A.; Gómez, E.; Ballesteros Martín, M.M.; Malato, S.; Sánchez Pérez, J.A. (2010). Integration of solar photocatalysis and membrane bioreactor for pesticides degradation. Separation Science and Technology, 45(11), 1571–1578. https://doi.org/10.1080/01496395.2010.487465.

Charalampous, A.C.; Miliadis, G.E.; Koupparis, M.A. (2015). A new multiresidue method for the determination of multiclass pesticides, degradation products and PCBs in water using LC–MS/MS and GC–MS(n) systems. International Journal of Environmental Analytical Chemistry, 95(13), 1283–1298. https://doi.org/10.1080/03067319.2015.1100723.

Bonnechère, A.; Hanot, V.; Bragard, C.; Bedoret, T.; van Loco, J. (2012). Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons. Food Additives & Contaminants: Part A, 29(7), 1058–1066. https://doi.org/10.1080/19440049.2012.672339.

Hussain, S.; Siddique, T.; Arshad, M.; Saleem, M. (2009). Bioremediation and phytoremediation of pesticides: Recent advances. Critical Reviews in Environmental Science and Technology, 39(10), 843–907. https://doi.org/10.1080/10643380801910090.

Chelme-Ayala, P.; El-Din, M.G.; Smith, D.W. (2010). Treatability study on membrane concentrate containing pesticides using advanced oxidation processes. Ozone: Science & Engineering, 32(1), 16–24. https://doi.org/10.1080/01919510903468029.

Dong, X.; Lan, T.; Tian, X.; Li, Y.; Zhao, Y.; Zong, Q.; Liu, S.; Pan, C. (2021). Simultaneous determination of 14 pesticide residues in tea by multi-plug filtration cleanup combined with LC-MS/MS. Journal of Environmental Science and Health, Part B, 56(8), 771–781. https://doi.org/10.1080/03601234.2021.1944962.

Magga, Z.; Tzovolou, D.N.; Theodoropoulou, M.A.; Dalkarani, T.; Pikios, K.; Tsakiroglou, C.D. (2008). Soil column experiments used as a means to assess transport, sorption, and biodegradation of pesticides in groundwater. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 43(8), 732–741. https://doi.org/10.1080/03601230802388868.

Lees, K.E.; Fitzsimons, M.F.; Snape, J.; Tappin, A.; Comber, S.D.W. (2020). Developing the OECD 106 fate testing protocol for active pharmaceuticals in soil. Environmental Technology, pp. 1–11. https://doi.org/10.1080/09593330.2019.1706643.

Liu, J.; Dai, J.; Wang, R.; Li, F.; Du, X.; Wang, W. (2010). Adsorption/desorption and fate of Mercury (II) by typical black soil and red soil in China. Soil and Sediment Contamination: An International Journal, 19(5), 587–601. https://doi.org/10.1080/15320383.2010.499925.

Muhire, J.; Li, Sha Sha; Yin, B.; Mi, Jia Ying; Zhai, Hong Lin. (2021). A simple approach to the prediction of soil sorption of organophosphorus pesticides. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 56(6), 606–612. https://doi.org/10.1080/03601234.2021.1934358.

Pérez-Lucas, G.; el Aatik, A.; Vela, N.; Fenoll, J.; Navarro, S. (2020). Exogenous organic matter as strategy to reduce pesticide leaching through the soil. Journal of Environmental Science and Health, Part B, 67(7), 934–945. https://doi.org/10.1080/03650340.2020.1768531.

Imache, A.E.; Dousset, S.; Satrallah, A.; Dahchour, A. (2012). Effects of sewage sludge amendments on pesticide sorption and leaching through undisturbed Mediterranean soils. Journal of Environmental Science and Health, Part B, 47(3), 161–167. https://doi.org/10.1080/03601234.2012.632260.

Yadav, S.; Banerjee, T.; Singh, N. (2021). Leaching behaviour of atrazine and fipronil in sugarcane trash ash mixed soils. International Journal of Environmental Analytical Chemistry, 103(19), 7494–7504. https://doi.org/10.1080/03067319.2021.1972101.

Bajeer, M.A.; Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Nizamani, S.M. (2015). Investigation of dissipation, adsorption, degradation, and leaching of triazophos pesticide in various soils. Polycyclic Aromatic Compounds, 36(3), 229–241. https://doi.org/10.1080/10406638.2014.964424.

Felsot, A. S.; Unsworth, J. B.; Linders, J. B. H. J.; Roberts, G.; Rautman, D.; Harris, C.; Carazo, E. (2010). Agrochemical spray drift; assessment and mitigation—A review. Journal of Environmental Science and Health, Part B, 46(1), 1–23. https://doi.org/10.1080/03601234.2010.515161.

Langenbach, T.; Mano, D.; Campos, M.M.; Cunha, A.L.M.C.; De Campos, T.M.P. (2017). Pesticide dispersion by spraying under tropical conditions. Journal of Environmental Science and Health. Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 52(12), 843–849. https://doi.org/10.1080/03601234.2017.1359040.

Jensen, A.R.; Spliid, N.H.; Svensmark, B. (2007). Determination of volatilization (dissipation) and secondary deposition of pesticides in a field study using passive dosimeters. International Journal of Environmental Analytical Chemistry, 87(13–14), 913–926. https://doi.org/10.1080/03067310701455955.

Yigit, N.; Velioglu, Y.S. (2019). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60(21), 1–20. https://doi.org/10.1080/10408398.2019.1702501.

Daouk, S.; De Alencastro, L.F.; Pfeifer, H.-R. (2013). The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: Proof of widespread export to surface waters. Part II: The role of infiltration and surface runoff. Journal of Environmental Science and Health, Part B, 48(9), 725–736. https://doi.org/10.1080/03601234.2013.780548.

Tiktak, A.; Boesten, J.J.T.I.; Egsmose, M.; Gardi, C.; Klein, M.; Vanderborght, J. (2013). European scenarios for exposure of soil organisms to pesticides. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 48(9), 703–716. https://doi.org/10.1080/03601234.2013.780525.

Dołowy, M.; Miszczyk, M.; Pyka, A. (2014). Application of various methods to determine the lipophilicity parameters of the selected urea pesticides as predictors of their bioaccumulation. Journal of Environmental Science and Health, Part B, 49(10), 730–737. https://doi.org/10.1080/03601234.2014.929481.

Reponen, P.; Abass, K.; Mattila, S.; Pelkonen, O. (2010). Overview of the metabolism and interactions of pesticides in hepaticin vitrosystems. International Journal of Environmental Analytical Chemistry, 90(3–6), 429–437. https://doi.org/10.1080/03067310903194931.

Kozawa, K.; Aoyama, Y.; Mashimo, S.; Kimura, H. (2009). Toxicity and actual regulation of organophosphate pesticides. Toxin Reviews, 28(4), 245–254. https://doi.org/10.3109/15569540903297808.

Arcury, T.A.; Quandt, S.A. (2006). Health and social impacts of tobacco production. Journal of Agromedicine, 11(3–4), 71–81. https://doi.org/10.1300/J096v11n03_08.

Frazier, L.M. (2007). Reproductive disorders associated with pesticide exposure. Journal of Agromedicine, 12(1), 27–37. https://doi.org/10.1300/j096v12n01_04.

Sahu, P.; Michael, H.A.; Voss, C.I.; Sikdar, P.K. (2013). Impacts on groundwater recharge areas of megacity pumping: Analysis of potential contamination of Kolkata, India, water supply. Hydrological Sciences Journal, 58(6), 1340–1360. https://doi.org/10.1080/02626667.2013.813946.

Kazemzadeh-Parsi, M.J.; Daneshmand, F.; Ahmadfard, M.A.; Adamowski, J.; Martel, R. (2014). Optimal groundwater remediation design of pump and treat systems via a simulation–optimization approach and firefly algorithm. Engineering Optimization, 47(1), 1–17. https://doi.org/10.1080/0305215x.2013.858138.

Zhou, M.; Cai, F.; Uenishi, M.; Sekine, Y. (2021). Performance evaluation of a hybrid heating system combined with a groundwater source heat pump with an existing fuel oil heater for a horticultural greenhouse. International Journal of Green Energy, 19(13), 1404–1414. https://doi.org/10.1080/15435075.2021.2000415.

Sharief, V.; Eldho, T.I.; Ish, F.; Rastogi, A.K. (2008). Optimal pumping policy for aquifer decontamination by pump and treat method using genetic algorithm. ISH Journal of Hydraulic Engineering, 14(2), 1–17. https://doi.org/10.1080/09715010.2008.10514901.

Hata, T.; Miyata, Y.; Honjo, Y. (2010). Pumping-rate control for contaminated groundwater with VOCs by using fuzzy inference model. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 4(2), 63–76. https://doi.org/10.1080/17499510903045979.

Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbæk, H.; Siegrist, R.L.; Bjerg, P.L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Critical Reviews in Environmental Science and Technology, 40(1), 55–91. https://doi.org/10.1080/10643380802039303.

Tressler, A.; Uchrin, C. (2014). Mathematical simulation of chlorinated ethene concentration rebound after in situ chemical oxidation. Journal of Environmental Science and Health, Part A, 49(8), 869–881. https://doi.org/10.1080/10934529.2014.893790.

Wang, P.; Li, J.; An, P.; Yang, B.; Hou, D.; Pu, S. (2023). Understanding the dilemmas and breakdown of the reactive migration of in situ groundwater injection reagents from an environmental geology perspective. Critical Reviews in Environmental Science and Technology, 1–24. https://doi.org/10.1080/10643389.2023.2277649.

Qian, Y.; Wang, Q.; Yue, F. (2014). Remediation of TCE-contaminated water by enhanced chemical oxidation using Na2S2O8/H2O2/red mud. Desalination and Water Treatment, 57(9), 4154–4161. https://doi.org/10.1080/19443994.2014.988648.

Ikehata, K.; Wang-Staley, L.; Qu, X.; Li, Y. (2016). Treatment of groundwater contaminated with 1,4-dioxane, tetrahydrofuran, and chlorinated volatile organic compounds using advanced oxidation processes. Ozone: Science & Engineering, 38(6), 413–424. https://doi.org/10.1080/01919512.2016.1198686.

Kunukcu, Y.K. (2007). In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs). Journal of Environmental Science and Health, Part A, 42(7), 839–845. https://doi.org/10.1080/10934520701373174.

Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Dai, J.; Liang, J.; Yu, J.; Ren, X.; Yi, H.; Cheng, M.; Zhang, C. (2017). Biological technologies for the remediation of co-contaminated soil. Critical Reviews in Biotechnology, 37(8), 1062–1076. https://doi.org/10.1080/07388551.2017.1304357.

Low, A.; Schleheck, D.; Khou, M.; Aagaard, V.; Lee, M.; Manefield, M. (2007). Options for in situ remediation of soil contaminated with a mixture of perchlorinated compounds. Bioremediation Journal, 11(3), 113–124. https://doi.org/10.1080/10889860701548556.

Kamarudheen, N.; Chacko, S.P.; George, C.A.; Somachandran, R.C.; Rao, B. (2020). An ex-situ and in vitro approach towards the bioremediation of carcinogenic hexavalent chromium. Preparative Biochemistry & Biotechnology, 50(8), 842–848. https://doi.org/10.1080/10826068.2020.1755868.

Bhowmik, A.; Asahino, A.; Shiraki, T.; Nakamura, K.; Takamizawa, K. (2009). In situ study of tetrachloroethylene bioremediation with different microbial community shifting. Environmental Technology, 30(14), 1607–1614. https://doi.org/10.1080/09593330903369986.

Compernolle, T.; Van Passel, S.; Weyens, N.; Vangronsveld, J.; Lebbe, L.; Thewys, T. (2012). Groundwater remediation and the cost effectiveness of phytoremediation. International Journal of Phytoremediation, 14(9), 861–877. https://doi.org/10.1080/15226514.2011.628879.

Weishaar, J.A.; Tsao, D.; Burken, J.G. (2009). Phytoremediation of BTEX hydrocarbons: Potential impacts of diurnal groundwater fluctuation on microbial degradation. International Journal of Phytoremediation, 11(5), 509–523. https://doi.org/10.1080/15226510802656326.

Lafleur, B.; Sauvé, S.; Duy, S.V.; Labrecque, M. (2016). Phytoremediation of groundwater contaminated with pesticides using short-rotation willow crops: A case study of an apple orchard. International Journal of Phytoremediation, 18(11), 1128–1135. https://doi.org/10.1080/15226514.2016.1186593.

Khalid, S.; Shahid, M.; Dumat, C.; Niazi, N. K.; Bibi, I.; Gul Bakhat, H. F. S.; Abbas, G.; Murtaza, B.; Javeed, H. M. R. (2017). Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: Implications for health risk assessment and phytoremediation. International Journal of Phytoremediation, 19(11), 1037–1046. https://doi.org/10.1080/15226514.2017.1319330.

About this article

SUBMITTED: 08 March 2025
ACCEPTED: 09 May 2025
PUBLISHED: 11 May 2025
SUBMITTED to ACCEPTED: 62 days
DOI: https://doi.org/10.53623/csue.v5i1.629

Cite this article
Primus, A. ., Siganul, A. P. ., Emalya, N., Yusnar, C. ., Wijayanti, Y. ., Rubiyatno, Permana, R. ., Park, S. H. ., Thakali, O. ., Aina, C., Wahyuningsih, N. P. S. ., & Commey, N. A. . (2025). Sustainable Water Management Strategies for Mitigating Pesticide Pollution in Urban and Agricultural Areas. Civil and Sustainable Urban Engineering, 5(1), 30–52. https://doi.org/10.53623/csue.v5i1.629
Keywords
Accessed
101
Citations
0
Share this article