Skip to main content

Green Material Technologies in the Malaysian Construction Industry: Current Trends and Future Prospects

Author(s): Audrey Primus 1 ORCID https://orcid.org/0000-0001-5314-5674 , Muhammad Syafruddin 2 , Abbas Zulkifly 3 , Surya Dewi Puspitasari 4 ORCID https://orcid.org/0000-0002-1810-1622 , Cut Yusnar 5 , Jovale Vincent Tongco 6 ORCID https://orcid.org/0000-0001-7047-1703 , Amit Kumar Maharjan 7 ORCID https://orcid.org/0000-0002-2568-6366 , Rabin Maharjan 8 ORCID https://orcid.org/0000-0002-2258-2086 , Jayapadma Mudalige Miyuru Uthpala Jayapadma 9 , 10 , ORCID https://orcid.org/0000-0001-6126-9968 , Yuangga Rizky Illahi 9 , 10 , ORCID https://orcid.org/0009-0006-9587-0288 , Muhamad Diki Permana 11 , 12 , ORCID https://orcid.org/0000-0002-5871-5004
Author(s) information:
1 Facuty of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
2 Faculty of Technical Sciences, University of Warmia and Mazury, Olsztyn, Poland
3 DL Engineering, Kuala Lumpur, Malaysia
4 Department of Civil and Environmental Engineering, the Norwegian University of Science and Technology, Trondheim, Norway
5 Department of Civil Engineering, Lhokseumawe State Polytechnic, Lhokseumawe 24301, Indonesia
6 Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, USA
7 Organization for Public Health and Environment Management, Lalitpur Metropolitan City – 10, Nepal
8 Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal
9 Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
10 Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
11 Center for Crystal Science and Technology, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
12 Special Educational Program for Green Energy Conversion Science and Technology, Integrated Graduate School of Medicine, Engineering, and Agricultural Science, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan

Corresponding author

Rapid urbanization and industrialization coupled with growing population causes rapid development of the construction industry. The construction activities carried out and improper construction waste management can result in significant environmental impact if not mitigated such as air and dust pollution, surface water pollution and noise pollution. Government policies and initiatives for sustainable construction has been formulated and implemented in Malaysia to promote green construction.  The adoption of industrialised building system (IBS) is encouraged to achieve construction waste minimization and reduction starting from the design and planning stage of construction. The implementation of 3Rs strategies is also significant to reduce the construction waste generated and minimize the environmental pollution caused by landfill disposal of construction waste. Agricultural waste can be incorporated in the manufacturing of concrete as substitute for cement or aggregate hence can decrease the greenhouse gases emission associated with cement manufacturing. Several green materials technologies including solar photovoltaic system, cooling roof system and rainwater harvesting system are implemented in Malaysia.

Next article

Esa, M.R.; Halog, A.; Rigamonti, L. (2017). Strategies for minimizing construction and demolition wastes in Malaysia. Resources, Conservation and Recycling, 120, 219–229. https://doi.org/10.1016/j.resconrec.2016.12.014.

Hasmori, M.F.; Faizul Md Zin, A.; Nagapan, S.; Deraman, R.; Abas, N.; Yunus, R.; Klufallah, M. (2020). The on-site waste minimization practices for construction waste. IOP Conference Series: Materials Science and Engineering, 713(1), 012038. https://doi.org/10.1088/1757-899X/713/1/012038.

Klufallah, M.M.A.; Nuruddin, M.F.; Khamidi, M.F.; Jamaludin, N. (2014). Assessment of carbon emission reduction for buildings projects in Malaysia-A comparative analysis. E3S Web of Conferences, 3, 01016. https://doi.org/10.1051/e3sconf/20140301016.

Pauzi, N.N.M.; Kah Yeow, P.; Hang Go, Z.; Hadibarata, T. (2021). Overview on the implementation of green building design in Malaysia, Singapore, Vietnam and Thailand. International Journal of Advanced Research in Technology and Innovation, 3(3), 35–48.

Yahaya, I.; Abidin, Z. (2020). The implementation of environmental practices by Malaysian contractors. International Journal of Integrated Engineering, 12(4), 310–318. https://doi.org/10.30880/ijie.2020.12.04.030.

Rahman, N.N.N.A.; Esa, N. (2014). Managing construction development risks to the environment. In Sustainable Living with Environmental Risks. Kaneko, N., Yoshiura, S., Kobayashi, M., Eds.; Springer: Japan, pp. 193–202. https://doi.org/10.1007/978-4-431-54804-1_16.

Hoang, N.H.; Ishigaki, T.; Kubota, R.; Yamada, M.; Kawamoto, K. (2020). A review of construction and demolition waste management in Southeast Asia. Journal of Material Cycles and Waste Management, 22(2), 315–325. https://doi.org/10.1007/s10163-019-00914-5.

Umar, U.A.; Shafiq, N.; Ahmad, F.A. (2021). A case study on the effective implementation of the reuse and recycling of construction & demolition waste management practices in Malaysia. Ain Shams Engineering Journal, 12(1), 283–291. https://doi.org/10.1016/j.asej.2020.07.005.

Rahim, M.H.I.A.; Kasim, N.; Mohamed, I.; Zainal, R.; Sarpin, N.; Saikah, M. (2017). Construction waste generation in Malaysia construction industry: Illegal dumping activities. IOP Conference Series: Materials Science and Engineering, 271(1), 012040. https://doi.org/10.1088/1757-899X/271/1/012040.

Shaikh, P.H.; Nor, N.B. Mohd.; Sahito, A.A.; Nallagownden, P.; Elamvazuthi, I.; Shaikh, M.S. (2017). Building energy for sustainable development in Malaysia: A review. Renewable and Sustainable Energy Reviews, 75, 1392–1403. https://doi.org/10.1016/j.rser.2016.11.128.

Mustaffa, N.K.; Abdul Kudus, S.; Abdul Aziz, M.F.H.; Anak Joseph, V.R. (2022). Strategies and way forward of low carbon construction in Malaysia. Building Research & Information, 50(6), 628–645. https://doi.org/10.1080/09613218.2021.2023350.

Mohamad Bohari, A.A.; Skitmore, M.; Xia, B.; Teo, M.; Zhang, X.; Adham, K.N. (2015). The path towards greening the Malaysian construction industry. Renewable and Sustainable Energy Reviews, 52, 1742–1748. https://doi.org/10.1016/j.rser.2015.07.148.

Environmental Quality Act 1974 (Act 127) (Accessed on 2 April 2024). Available online: https://www.doe.gov.my/wp-content/uploads/2021/07/Environmental_Quality_Act_1974_-_ACT_127.pdf.

Esa, M.R.; Halog, A.; Rigamonti, L. (2017). Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy. Journal of Material Cycles and Waste Management, 19(3), 1144–1154. https://doi.org/10.1007/s10163-016-0516-x

Lachimpadi, S.K.; Pereira, J.J.; Taha, M.R.; Mokhtar, M. (2012). Construction waste minimisation comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study. Resources, Conservation and Recycling, 68, 96–103. https://doi.org/10.1016/j.resconrec.2012.08.011.

Ismail, S.; Hon, C.K.H.; Crowther, P.; Skitmore, M.; Lamari, F. (2023). The drivers and challenges of adopting the Malaysia industrialised building system for sustainable infrastructure development. Construction Innovation, 23(5), 1054–1074. https://doi.org/10.1108/CI-05-2021-0088.

Hamid, S.; Maznah, C.; Felix, S.N.; Mustaffa, N.K. (2020). Sustainable management using recycle and reuse of construction waste materials in Malaysia. ESTEEM Academic Journal, 16, 47–58.

Ismail, S.; Hoe, K.W.; Ramli, M. (2013). Sustainable aggregates: The potential and challenge for natural resources conservation. Procedia - Social and Behavioral Sciences, 101, 100–109. https://doi.org/10.1016/j.sbspro.2013.07.183

Al-Mansour, A.; Chow, C.L.; Feo, L.; Penna, R.; Lau, D. (2019). Green concrete: By- products utilization and advanced approaches. Sustainability, 11(19), 5145. https://doi.org/10.3390/su11195145.

Karim, M.R.; Maruf Hossain, M.; Nabi Newaz Khan, M.; Fauzi, M.; Zain, M.; Jamil, M.; Lai, F.C. (2014). On the utilization of pozzolanic wastes as an alternative resource of cement. Materials, 7, 7809–7827. https://doi.org/10.3390/ma7127809.

Shafigh, P.; Mahmud, H.B.; Jumaat, M.Z.; Zargar, M. (2014). Agricultural wastes as aggregate in concrete mixtures – A review. Construction and Building Materials, 53, 110–117. https://doi.org/10.1016/j.conbuildmat.2013.11.074.

Paul, S.C.; Mbewe, P.B.K.; Kong, S.Y.; Šavija, B. (2019). Agricultural solid waste as source of supplementary cementitious materials in developing countries. Materials, 12(7), 1112. https://doi.org/10.3390/ma12071112.

Bamaga, S.O.; Hussin, M.W.; Ismail, M.A. (2013). Palm oil fuel ash: Promising supplementary cementing materials. KSCE Journal of Civil Engineering, 17(7), 1708–1713. https://doi.org/10.1007/s12205-013-1241-9.

Kishore, R.; Bhikshma, V.; Prakash, P.J. (2011). Study on strength characteristics of high strength rice husk ash concrete. Procedia Engineering, 14, 2666–2672. https://doi.org/10.1016/j.proeng.2011.07.335.

Mangi, S.A.; Jamaluddin, N.; Wan Ibrahim, M.H.; Abdullah, A.H.; Abdul Awal, A.S.M.; Sohu, S.; Ali, N. (2017). Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Conference Series: Materials Science and Engineering, 271(1), 012001. https://doi.org/10.1088/1757-899X/271/1/012001.

Shafigh, P.; Jumaat, M.Z.; Mahmud, H. (2011). Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 25(4), 1848–1853. https://doi.org/10.1016/j.conbuildmat.2010.11.075.

Rahman Sobuz, H.; Hasan, N.M.S.; Tamanna, N.; Islam, M.S. (2014). Structural lightweight concrete production by using oil palm shell. https://doi.org/10.1155/2014/870247.

Itam, Z.; Beddu, S.; Mohd Kamal, N.L.; Alam, M.A.; Ayash, U.I. (2016). The feasibility of palm kernel shell as a replacement for coarse aggregate in lightweight concrete. IOP Conference Series: Earth and Environmental Science, 32(1), 012040. https://doi.org/10.1088/1755-1315/32/1/012040.

Azunna, S.U.; Aziz, F.N.A.A.; Cun, P.M.; Elhibir, M.M.O. (2019). Characterization of lightweight cement concrete with partial replacement of coconut shell fine aggregate. SN Applied Sciences, 1(6), 649. https://doi.org/10.1007/s42452-019-0629-7.

Mekhilef, S.; Safari, A.; Mustaffa, W.E.S.; Saidur, R.; Omar, R.; Younis, M.A.A. (2012). Solar energy in Malaysia: Current state and prospects. Renewable and Sustainable Energy Reviews, 16(1), 386–396. https://doi.org/10.1016/j.rser.2011.08.003.

Kamaruzzaman, S.N.; Abdul-Rahman, H.; Wang, C.; Bari Karim, S.; Yee Lee, T. (2012). Solar technology and building implementation in Malaysia: A national paradigm shift. Maejo International Journal of Science and Technology, 6(02), 196–215.

Othman, A.R.; Rushdi, A.T. (2014). Potential of building integrated photovoltaic application on roof top of residential development in Shah Alam. Procedia - Social and Behavioral Sciences, 153, 491–500. https://doi.org/10.1016/j.sbspro.2014.10.082.

Sampaio, P.G.V.; González, M.O.A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590–601. https://doi.org/10.1016/j.rser.2017.02.081.

Tyagi, V.V.; Rahim, N.A.A.; Rahim, N.A.; Selvaraj, J.A./L. (2013). Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews, 20, 443–461. https://doi.org/10.1016/j.rser.2012.09.028.

Al-Obaidi, K.M.; Ismail, M.; Abdul Rahman, A.M. (2014). Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research, 3(3), 283–297. https://doi.org/10.1016/j.foar.2014.06.002.

Yew, M.C.; Yew, M.K.; Saw, L.H.; Ng, T.C.; Chen, K.P.; Rajkumar, D.; Beh, J.H. (2018). Experimental analysis on the active and passive cool roof systems for industrial buildings in Malaysia. Journal of Building Engineering, 19, 134–141. https://doi.org/10.1016/j.jobe.2018.05.001.

Farhan, S.A.; Ismail, F.I.; Kiwan, O.; Shafiq, N.; Zain-Ahmed, A.; Husna, N.; Hamid, A.I.A. (2021). Effect of roof tile colour on heat conduction transfer, roof-top surface temperature and cooling load in modern residential buildings under the tropical climate of Malaysia. Sustainability, 13(9), 4665. https://doi.org/10.3390/su13094665.

Ashtari, B.; Yeganeh, M.; Bemanian, M.; Vojdani Fakhr, B. (2021). A conceptual review of the potential of cool roofs as an effective passive solar technique: Elaboration of benefits and drawbacks. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.738182.

Md Lani, N.H.; Yusop, Z.; Syafiuddin, A. (2018). A review of rainwater harvesting in Malaysia: Prospects and challenges. Water, 10(4), 506. https://doi.org/10.3390/w10040506.

Zabidi, H.A.; Goh, H.W.; Chang, C.K.; Chan, N.W.; Zakaria, N.A. (2020). A review of roof and pond rainwater harvesting systems for water security: The design, performance and way forward. Water, 12(11), 3163. https://doi.org/10.3390/w12113163.

About this article

SUBMITTED: 08 March 2025
ACCEPTED: 07 May 2025
PUBLISHED: 9 May 2025
SUBMITTED to ACCEPTED: 60 days
DOI: https://doi.org/10.53623/tebt.v3i1.628

Cite this article
Primus, A. ., Syafruddin, M. ., Zulkifly, A. ., Puspitasari, S. D. ., Yusnar, C. ., Tongco, J. V. ., Maharjan, A. K. ., Maharjan, R. ., Jayapadma, J. M. M. U. ., Illahi, Y. R. ., & Permana, M. D. . (2025). Green Material Technologies in the Malaysian Construction Industry: Current Trends and Future Prospects. Tropical Environment, Biology, and Technology, 3(1), 25–39. https://doi.org/10.53623/tebt.v3i1.628
Keywords
Accessed
221
Citations
0
Share this article