Population growth was very rapid and triggered significant advancements in both the industrial and agricultural sectors, leading to increased production of pharmaceuticals and pesticides. The over-utilization of chemical compounds greatly accelerated several environmental pollution problems that were highly harmful to both local ecosystems and human health. Therefore, this justified the study of the environmental fate and transport of pesticides, their effects on human health, and an overview of enzymatic decomposition as a biological means for pesticide removal. More specifically, the study focused on potential agents such as carboxylesterases and hydrolases, examining their mechanisms, advantages, and disadvantages in bioremediation applications. It discussed the environmental fate and transport of pesticides and their impact on human health. The subsequent sections addressed enzymatic degradation, with a focus on carboxylesterases and hydrolases, presenting their mechanisms along with the benefits and limitations of applying them in bioremediation. The article also examined future prospects for enzyme reactions in bioremediation and purification processes. Bioremediation was identified as a highly promising method for remediating pesticide-contaminated soil. Microorganisms removed the compounds from the environment. Among various remediation approaches, enzymatic breakdown of biocides emerged as a particularly promising method for treating biodegradable pollutants by breaking down persistent chemical compounds and eliminating waste materials through enzymatic reactions. This method demonstrated the ability to degrade most organic pollutants and was shown to be both feasible and eco-friendly, with considerable potential for treating other types of organic contamination.
Alvarenga, P. (2022). Soil Pollution Assessment and Sustainable Remediation Strategies. Environments, 9, 46. https://doi.org/10.3390/environments9040046.
Ali, N.; Khan, S.; Li, Y.; Zheng, N.; Yao, H. (2019). Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Science of The Total Environment, 647, 551‒560. https://doi.org/10.1016/j.scitotenv.2018.07.425.
Arambourou, H.; Planelló, R.; Llorente, L.; Fuertes, I.; Barata, C.; Delorme, N.; Noury, P.; Herrero, O.; Villeneuve, A.; Bonnineau, C. (2019). Chironomus riparius exposure to field-collected contaminated sediments: From subcellular effect to whole-organism response. Science of the Total Environment, 671, 874‒882. https://doi.org/10.1016/j.scitotenv.2019.03.384.
Neuwirthová, N.; Trojan, M.; Svobodová, M.; Vašíčková, J.; Šimek, Z.; Hofman, J.; Bielská, L. (2019). Pesticide residues remaining in soils from previous growing season(s) – Can they accumulate in non-target organisms and contaminate the food web? Science of the Total Environment, 646, 1056‒1062. https://doi.org/10.1016/j.scitotenv.2018.07.357.
Ramón, F.; Lull, C. (2019). Legal measures to prevent and manage soil contamination and to increase food safety for consumer health: The case of Spain. Environmental Pollution, 250, 883‒891. https://doi.org/10.1016/j.envpol.2019.04.074.
Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. (2018). Pyrethroid pesticide residues in the global environment: An overview. Chemosphere, 191, 990‒1007. https://doi.org/10.1016/j.chemosphere.2017.10.115.
Attaullah, M.; Yousuf, M.J.; Shaukat, S.; Anjum, S.I.; Ansari, M.J.; Buneri, I.D.; Tahir, M.; Amin, M.; Ahmad, N.; Khan, S.U. (2018). Serum organochlorine pesticides residues and risk of cancer: A case-control study. Saudi Journal of Biological Sciences, 25(7), 1284‒1290. https://doi.org/10.1016/j.sjbs.2017.10.023.
Davoren, M.J.; Schiestl, R.H. (2018). Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis, 39(10), 1207‒1215. https://doi.org/10.1093/carcin/bgy105.
Karimi, H.; Mahdavi, S.; Asgari Lajayer, B.; Moghiseh, E.; Rajput, V.D.; Minkina, T.; Astatkie, T. (2021). Insights on the bioremediation technologies for pesticide-contaminated soils. Environmental Geochemistry and Health, 44(4), 1329‒1354. https://doi.org/10.1007/s10653-021-01081-z.
FAO Soils Portal. (accessed on 14 February 2025) Available online: https://www.fao.org/soils-portal/soil-degradation-restoration/en/.
Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. (2020). Soil biological activity as an indicator of soil pollution with pesticides – A review. Applied Soil Ecology, 147, 103356. https://doi.org/10.1016/j.apsoil.2019.09.006.
Riffaldi, R.; Levi-Minzi, R.; Cardelli, R.; Palumbo, S.; Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170(1‒4), 3‒15. https://doi.org/10.1007/s11270-006-6328-1.
Morillo, E.; Madrid, F.; Lara-Moreno, A.; Villaverde, J. (2020). Soil bioremediation by cyclodextrins. A review. International Journal of Pharmaceutics, 591, 119943. https://doi.org/10.1016/j.ijpharm.2020.119943.
Kaur, R.; Mavi, G.K.; Raghav, S.; Khan, I. (2019). Pesticides classification and its impact on environment. International Journal of Current Microbiology and Applied Sciences, 8(03), 1889‒1897. https://doi.org/10.20546/ijcmas.2019.803.224.
Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. (2019). Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of the Total Environment, 653, 1532‒1545. https://doi.org/10.1016/j.scitotenv.2018.10.441.
Ćwieląg-Piasecka, I.; Medyńska-Juraszek, A.; Jerzykiewicz, M.; Dębicka, M.; Bekier, J.; Jamroz, E.; Kawałko, D. (2018). Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments, 18(8), 2692‒2702. https://doi.org/10.1007/s11368-018-1976-5.
Castelo-Grande, T.; Augusto, P.A.; Monteiro, P.; Estevez, A.M.; Barbosa, D. (2010). Remediation of soils contaminated with pesticides: a review. International Journal of Environmental Analytical Chemistry, 90(3‒6), 438‒467. https://doi.org/10.1080/03067310903374152.
Dominati, E.; Mackay, A.; Green, S.; Patterson, M. (2014). A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecological Economics, 100, 119‒129. https://doi.org/10.1016/j.ecolecon.2014.02.008.
Agrawal, A.; Pandey, R.S.; Sharma, B. (2010). Water pollution with special reference to pesticide contamination in India. Journal of Water Resource and Protection, 2(5), 432‒448. https://doi.org/10.4236/jwarp.2010.25050.
Damalas, C. (2009). Understanding benefits and risks of pesticide use. Scientific Research and Essays, 4, 945‒949.
Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.-C.; García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247‒260. https://doi.org/10.1016/j.agee.2007.07.011.
Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497‒526. https://doi.org/10.1002/elsc.200520098.
Tiryaki, O.; Temur, C. (2010). The fate of pesticide in the environment. Journal of Biodiversity and Environmental Sciences, 4, 29‒38.
Müller, K.; Magesan, G.N.; Bolan, N.S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment, 120(2‒4), 93‒116. https://doi.org/10.1016/j.agee.2006.08.016.
Agricultural pesticides and human health. (accessed on 14 February 2025) Available online: https://serc.carleton.edu/NAGTWorkshops/health/case_studies/pesticides.html.
Kim, S.-K. (2019). Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem. Environmental Engineering Research, 25(1), 43‒51. https://doi.org/10.4491/eer.2019.003.
Hoppin, J.A.; Umbach, D.M.; Long, S.; London, S.J.; Henneberger, P.K.; Blair, A.; Alavanja, M.; Freeman, L.E.B.; Sandler, D.P. (2017). Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environmental Health Perspectives, 125(4), 535‒543. https://doi.org/10.1289/ehp315.
Di Pietro, G.; Forcucci, F.; Chiarelli, F. (2023). Endocrine Disruptor Chemicals and Children’s Health. International Journal of Molecular Sciences. 24, 2671. https://doi.org/10.3390/ijms24032671.
Sabarwal, A.; Kumar, K.; Singh, R.P. (2018). Hazardous effects of chemical pesticides on human health—Cancer and other associated disorders. Environmental Toxicology and Pharmacology, 63, 103‒114. https://doi.org/10.1016/j.etap.2018.08.018.
Dong, W.; Zhang, Y.; Quan, X. (2020). Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere, 242, 125113. https://doi.org/10.1016/j.chemosphere.2019.125113.
Bonner, M.R.; Freeman, L.E.B.; Hoppin, J.A.; Koutros, S.; Sandler, D.P.; Lynch, C.F.; Hines, C.J.; Thomas, K.; Blair, A.; Alavanja, M.C.R. (2017). Occupational Exposure to Pesticides and the Incidence of Lung Cancer in the Agricultural Health Study. Environmental Health Perspectives, 125(4), 544–551. https://doi.org/10.1289/ehp456.
Polanco Rodríguez, Á.G.; Riba López, M.I.; DelValls Casillas, T.Á.; Araujo León, J.A.; Mahjoub, O.; Prusty, A.K. (2017). Monitoring of organochlorine pesticides in blood of women with uterine cervix cancer. Environmental Pollution, 220, 853–862. https://doi.org/10.1016/j.envpol.2016.10.068.
Schinasi, L.; Leon, M.E. (2014). Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 11(4), 4449–4527. https://doi.org/10.3390/ijerph110404449.
The WHO recommended classification of pesticides by hazard and guidelines to classification, 2009 edition. (accessed on 14 February 2025) Available online: https://www.who.int/publications/i/item/9789241547963.
Gilden, R.C.; Huffling, K.; Sattler, B. (2010). Pesticides and Health Risks. Journal of Obstetric, Gynecologic & Neonatal Nursing, 39(1), 103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x.
Raffa, C.M.; Chiampo, F. (2021). Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering, 8(7), 92. https://doi.org/10.3390/bioengineering8070092.
Khajezadeh, M.; Abbaszadeh-Goudarzi, K.; Pourghadamyari, H.; Kafilzadeh, F. (2020). A newly isolated Streptomyces rimosus strain capable of degrading deltamethrin as a pesticide in agricultural soil. Journal of Basic Microbiology, 60(5), 435–443. https://doi.org/10.1002/jobm.201900263.
Scott, C.; Pandey, G.; Hartley, C.J.; Jackson, C.J.; Cheesman, M.J.; Taylor, M.C.; Pandey, R.; Khurana, J.L.; Teese, M.; Coppin, C.W.; Weir, K.M.; Jain, R.K.; Lal, R.; Russell, R.J.; Oakeshott, J.G. (2008). The enzymatic basis for pesticide bioremediation. Indian Journal of Microbiology, 48(1), 65–79. https://doi.org/10.1007/s12088-008-0007-4.
Singh, B.; Kaur, J.; Singh, K. (2011). Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World Journal of Microbiology and Biotechnology, 28(3), 1133–1141. https://doi.org/10.1007/s11274-011-0916-y.
Singh, B.K.; Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30(3), 428–471. https://doi.org/10.1111/j.1574-6976.2006.00018.x.
Goda, S.K.; Elsayed, I.E.; Khodair, T.A.; El-Sayed, W.; Mohamed, M.E. (2010). Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylesterase in soil bacteria. Biodegradation, 21, 903–913. https://doi.org/10.1007/s10532-010-9350-3.
Zhai, Y.; Li, K.; Song, J.; Shi, Y.; Yan, Y. (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. Journal of Hazardous Materials, 221–222, 206–212. https://doi.org/10.1016/j.jhazmat.2012.04.031.
Kambiranda, D.M.; Shah Md. Asraful-Islam; Kye Man Cho; Math, R.K.; Young Han Lee; Kim, H.; Han Dae Yun. (2009). Expression of esterase gene in yeast for organophosphates biodegradation. Pesticide Biochemistry and Physiology, 94, 15–20. https://doi.org/10.1016/j.pestbp.2009.02.006.
Lan, W.S.; Gu, J.D.; Zhang, J.L.; Shen, B.C.; Jiang, H.; Mulchandani, A.; Chen, W.; Qiao, C.L. (2006). Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. International Biodeterioration & Biodegradation, 58, 70–76. https://doi.org/10.1016/j.ibiod.2006.07.008.
Lu, P.; Jin, L.; Liang, B.; Zhang, J.; Li, S.; Feng, Z.; Huang, X. (2011). Study of Biochemical Pathway and Enzyme Involved in Metsulfuron-Methyl Degradation by Ancylobacter sp. XJ-412-1 Isolated from Soil. Current Microbiology, 62, 1718–1725. https://doi.org/10.1007/s00284-011-9919-z.
Wang, B.; Guo, P.; Hang, B.-J.; Lian, L.; He, J.; Li, S. (2009). Cloning of a Novel Pyrethroid-Hydrolyzing Carboxylesterase Gene from Sphingobium sp. Strain JZ-1 and Characterization of the Gene Product. Applied and Environmental Microbiology, 75, 5496–5500. https://doi.org/10.1128/aem.01298-09.
Karigar, C.S.; Rao, S.S. (2011). Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research, 2011, 1–11. https://doi.org/10.4061/2011/805187.
Microbes and Enzymes in Soil Health and Bioremediation. (2019). In Microorganisms for Sustainability. https://doi.org/10.1007/978-981-13-9117-0.
Sutherland, T.; Russell, R.; Selleck, M. (2002). Using enzymes to clean up pesticide residues. Pesticide Outlook, 13, 149–151. https://doi.org/10.1039/b206783h.
Kapoor, M.; Rajagopal, R. (2011). Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorous hydrolase. International Biodeterioration & Biodegradation, 65, 896–901. https://doi.org/10.1016/j.ibiod.2010.12.017.
Littlechild, J.A. (2015). Archaeal Enzymes and Applications in Industrial Biocatalysts. Archaea, 2015, 1–10. https://doi.org/10.1155/2015/147671.
Xie, Z.; Xu, B.; Ding, J.; Liu, L.; Zhang, X.; Li, J.; Huang, Z. (2013). Heterologous expression and characterization of a malathion-hydrolyzing carboxylesterase from a thermophilic bacterium, Alicyclobacillus tengchongensis. Biotechnology Letters, 35, 1283–1289. https://doi.org/10.1007/s10529-013-1195-5.
Schenk, G.; Mateen, I.; Ng, T.-K.; Pedroso, M.M.; Mitić, N.; Jafelicci, M.; Marques, R.F.C.; Gahan, L.R.; Ollis, D.L. (2016). Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coordination Chemistry Reviews, 317, 122–131. https://doi.org/10.1016/j.ccr.2016.03.006.
Seeger, M.; Hernández, M.; Méndez, V.; Ponce, B.; Córdova, M.; González, M. (2010). Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. Journal of Soil Science and Plant Nutrition, 10, (3). https://doi.org/10.4067/s0718-95162010000100007.
Liu, Y.; Wang, X.; Nong, S.; Bai, Z.; Han, N.; Wu, Q.; Huang, Z.; Ding, J. (2022). Display of a novel carboxylesterase CarCby on Escherichia coli cell surface for carbaryl pesticide bioremediation. Microbial Cell Factories, 21, (1). https://doi.org/10.1186/s12934-022-01821-5.
Yang, X.; Tang, X.; Dong, F.; Lin, L.; Wei, W.; Wei, D. (2020). Facile one-pot immobilization of a novel thermostable carboxylesterase from Geobacillus uzenensis for continuous pesticide degradation in a packed-bed column reactor. Catalysts, 10, 518. https://doi.org/10.3390/catal10050518.
Gianfreda, L.; Rao, M.A. (2004). Potential of extracellular enzymes in remediation of polluted soils: A review. Enzyme and Microbial Technology, 35, 339–354. https://doi.org/10.1016/j.enzmictec.2004.05.006.
Thakur, M.; Medintz, I.L.; Walper, S.A. (2019). Enzymatic bioremediation of organophosphate compounds—Progress and remaining challenges. Frontiers in Bioengineering and Biotechnology, 7, Article 289. https://doi.org/10.3389/fbioe.2019.00289.
SUBMITTED: 08 March 2025
ACCEPTED: 04 May 2025
PUBLISHED:
7 May 2025
SUBMITTED to ACCEPTED: 57 days
DOI:
https://doi.org/10.53623/tebt.v3i1.627