Skip to main content

Assessment of Levels and Health Risks of Atmospheric Particulate Matter (PM10) and Associated Gaseous Elements in Selected Locations in Lagos, Nigeria

Author(s): Tajudeen Yahaya 1 , Tawakalt Fagbayi 2 , Abdulmalik Abdulazeez 1 , Abdulrazaq Izuafa 1 , Sani Kalgo Abdulrahman 1 , Caleb Obadiah 1
Author(s) information:
1 Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
2 Department of Cell Biology and Genetics, University of Lagos, Nigeria

Corresponding author

Particulate matter with a size of 10 micrometers (PM10) poses health risks and thus needs to be monitored in every locality. This study assessed the health risks associated with PM10 and related gaseous elements, including nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3), in the ambient air of selected locations in Lagos, Nigeria. Theselocations included Ikeja, Apapa, Idumota, Odogunyan, Yaba, Obalende, Agege, Oshodi, Oto-Awori, and Ojodu. The average hourly dose (AHD), average daily dose (ADD), and hazard quotient (HQ) of these pollutants werecalculated. The results indicated that PM10 levels (ranging from 48.05±0.97 µg/m3 in Obalende to 115.00±1.74µg/m3 in Apapa) and CO levels (ranging from 12.46±0.84 µg/m3 in Obalende to 58.50±3.64 µg/m3 in Agege) exceeded the WHO permissible limits at all locations (45µg/m3 for PM10 and 7 µg/m3 for CO). NO2 levels (ranging from 0.00 µg/m3 in Yaba and Obalende to 23.98±2.06 µg/m3 in Oshodi) and O3 levels (ranging from 2.25±0.20 µg/m3 in Odogunyan to 38.71±2.41 µg/m3 in Oshodi) remained within permissible limits (25µg/m3 for NO2 and 100µg/m3 for O3) across all locations. The HQ of the ADD for both PM10 and CO (Agege and Oshodi only) exceeded the threshold, suggesting that air quality in these locations may induce toxic effects. These findings emphasize the need forpolicies aimed at controlling pollution in the city.

Thangavel, P.; Park, D.; Lee, Y.C. (2022). Recent Insights into Particulate Matter (PM2.5) Mediated Toxicity in Humans: An Overview. International Journal of Environmental Research and Public Health, 19 (12), 7511. https://doi.org/10.3390/ijerph19127511.

Lala, M. A.; Onwunzo, C.S.; Adesina, O.A., Sonibare, J.A. (2023). Particulate matters pollution in selected areas of Nigeria: Spatial analysis and risk assessment. Case Studies in Chemical and Environmental Engineering, 7, 100288. https://doi.org/10.1016/j.cscee.2022.100288.

Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014.

Hassan, A.; Ilyas, S.Z.; Agathopoulos, S.; Hussain, S.M.; Jalil, A.; Ahmed, S. et al. (2021). Evaluation of adverse effects of particulate matter on human life. Heliyon, 7(2), e05968. https://doi.org/10.1016/j.heliyon.2021.e05968.

Morantes, G.; González, J.C.; Rincón, G. (2021). Characterization of particulate matter and identification of emission sources in Greater Caracas, Venezuela. Air Quality, Atmosphere and Health, 14, 1989–2014. https://doi.org/10.1007/s11869-021-01070-2.

Calderón-Garcidueñas, L.; Stommel, E.W.; Rajkumar, R.P.; Mukherjee, P.S.; Ayala, A. (2021). Particulate Air Pollution and Risk of Neuropsychiatric Outcomes. What We Breathe, Swallow, and Put on Our Skin Matters. International Journal of Environmental Research and Public Health, 18(21), 11568. https://doi.org/10.3390/ijerph182111568.

Nnaji, C.C.; Chibueze, C.; Afangideh, C.B. (2023). The Menace and Mitigation of Air Pollution in the Built Environment: A Review. Nigerian Journal of Technology, 42(1), 12‒29. https://doi.org/10.4314/njt.v42i1.3.

Daellenbach, K.R.; Uzu, G.; Jiang, J. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587, 414–419. https://doi.org/10.1038/s41586-020-2902-8.

Sharma, S.K.; Mandal, T.K. (2023). Elemental Composition and Sources of Fine Particulate Matter (PM2.5) in Delhi, India. Bulletins of Environmental Contamination and Toxicology, 110, 60. https://doi.org/10.1007/s00128-023-03707-7.

Liu, Z.; Shen, L.; Yan, C.; Du, J.; Li, Y.; Zhao, H. (2020). Analysis of the Influence of Precipitation and Wind on PM2.5 and PM10 in the Atmosphere. Advances in Meteorology, Article ID 5039613. https://doi.org/10.1155/2020/5039613.

Sturm, R. (2020). Modelling the deposition of fine particulate matter (PM2.5) in the human respiratory tract. AME Medical Journal, 5, 14. https://doi.org/10.21037/amj.2020.03.04.

Fan, H.; Zhao, C.; Yang, Y.; Yang, X. (2021). Spatio-Temporal Variations of the PM2.5/PM10 Ratios and Its Application to Air Pollution Type Classification in China. Frontiers in Environmental Science, 9, 692440. https://doi.org/10.3389/fenvs.2021.692440.

Krupnova, T.G.; Rakova, O.V.; Bondarenko, K.A.; Saifullin, A.F.; Popova, D.A; Potgieter-Vermaak, S. et al. (2021). Elemental Composition of PM2.5 and PM10 and Health Risks Assessment in the Industrial Districts of Chelyabinsk, South Ural Region, Russia. International Journal of Environmental Research and Public Health, 18(23), 12354. https://doi.org/10.3390/ijerph182312354.

Parker, J.D.; Kravets, N.; Vaidyanathan, A. (2018). Particulate matter air pollution exposure and heart disease mortality risks by race and ethnicity in the United States: 1997 to 2009 national health interview survey with mortality follow-up through 2011. Circulation, 137, 1688–1697. https://doi.org/10.1161/CIRCULATIONAHA.117.029376.

Garcia, A.; Santa-Helena, E.; De Falco, A. (2023). Toxicological Effects of Fine Particulate Matter (PM2.5): Health Risks and Associated Systemic Injuries—Systematic Review. Water Air and Soil Pollution, 234, 346. https://doi.org/10.1007/s11270-023-06278-9.

Li, T.; Yu, Y.; Sun, Z. (2022). A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Particle and Fibre Toxicology, 19, 67. https://doi.org/10.1186/s12989-022-00507-5.

Zhao, N.; Smargiassi, A.; Jean, S. (2022). Long-term exposure to fine particulate matter and ozone and the onset of systemic autoimmune rheumatic diseases: an open cohort study in Quebec, Canada. Arthritis Research and Therapy, 24, 151. https://doi.org/10.1186/s13075-022-02843-5.

Lelieveld, J.; Haines, A.; Burnett, R.; Tonne, C.; Klingmüller, K.; Münzel, T. et al. (2023). Air pollution deaths attributable to fossil fuels: observational and modelling study. BMJ, 383, e077784. https://doi.org/10.1136/bmj-2023-077784.

Bălă, G.P.; Râjnoveanu, R.M.; Tudorache, E. (2021). Air pollution exposure—the (in)visible risk factor for respiratory diseases. Environmental Science and Pollution Research, 28, 19615–19628. https://doi.org/10.1007/s11356-021-13208-x.

Opio, R.; Mugume, I.; Nakatumba-Nabende, J. (2021). Understanding the Trend of NO2, SO2 and CO over East Africa from 2005 to 2020. Atmosphere, 12, 1283. https://doi.org/10.3390/atmos12101283.

Maboa, R.; Yessoufou, K.; Tesfamichael, S. (2022). Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes. Scientific Report, 12, 17467. https://doi.org/10.1038/s41598-022-22558-6.

Mannucci, P.M.; Franchini, M. (2017). Health Effects of Ambient Air Pollution in Developing Countries. International Journal of Environmental Research and Public Health, 14(9), 1048. https://doi.org/10.3390/ijerph14091048.

Bikis, A. (2023). Urban Air Pollution and Greenness in Relation to Public Health. Journal of Environmental and Public Health, Article ID 8516622. https://doi.org/10.1155/2023/8516622.

Croitoru, L.; Chang, J.; Akpokodje, J. (2020). The Health Cost of Ambient Air Pollution in Lagos. Journal of Environmental Protection, 11, 753-765. https://doi.org/10.4236/jep.2020.119046.

Obanya, H.E.; Amaeze, N.H.; Togunde, O.; Otitoloju, A.A. (2018). Air Pollution Monitoring Around Residential and Transportation Sector Locations in Lagos Mainland. Journal of Health & Pollution, 8(19), 180903. https://doi.org/10.5696/2156-9614-8.19.180903.

Global Air Quality Guidelines. Particulate matter (PM2.5 and PM10), Ozone, Nitrogen dioxide, Sulfur dioxide, and Carbon Monoxide. (accessed on 20 April 2024) Available online: https://www.who.int/publications-detail-redirect/9789240034228.

Onilude, O.O.; Vaz, E. (2021). Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Science, 3, 23. https://doi.org/10.3390/sci3020023.

Oyalowo, B. (2022). Implications of urban expansion: land, planning and housing in Lagos. Building and Cities, 3(1), 692–708. https://doi.org/10.5334/bc.243.

Otuoze, S.H.; Hunt, D.V.L.; Jefferson, I. (2021). Neural Network Approach to Modelling Transport System Resilience for Major Cities: Case Studies of Lagos and Kano (Nigeria). Sustainability, 13,1371. https://doi.org/10.3390/su13031371.

Ajayi, S.A.; Adams, C.A.; Dumedah, G.O.; Adebanji, O.A.; Ababio-Donkor, A.; Ackaah, W. et al. (2023). Public perceptions of vehicular traffic emissions on health risk in Lagos metropolis Nigeria: A critical survey. Heliyon, 9(5), e15712. https://doi.org/10.1016/j.heliyon.2023.e15712.

Yahaya, T.; Umar, F.M.; Zanna, A.M.; Abdulmalik, A.; Ibrahim, B.A.; Bilyaminu, M.; Joseph, A. (2023). Concentrations and health risks of particulate matter (PM2.5) and associated elements in the ambient air of Lagos, Southwestern Nigeria. Journal of Biological Research & Biotechnology, 21(3), 2141‒2149. https://doi.org/10.4314/br.v21i3.9.

Thabethe, N.N.L.; Engelbrecht, J.C.; Wright, C.Y.; Oosthuizen, M.A. (2014). Human health risks posed by exposure to PM10 for four life stages in a low socioeconomic community in South Africa. Pan African Medical Journal, 18, 206. https://doi.org/10.11604/pamj.2014.18.206.3393.

Khaniabadi, Y.O.; Goudarzi, G.; Daryanoosh, S.M. (2017). Exposure to PM10, NO2, and O3 and impacts on human health. Environmental Science and Pollution Research, 24, 2781–2789. https://doi.org/10.1007/s11356-016-8038-6.

Abdul Shakor, A.S.; Muhammad, A.P.; Mohamad, I.M. (2020). Effects of Population Weighting on PM10 Concentration Estimation. Journal of Environmental and Public Health, Article ID 1561823. https://doi.org/10.1155/2020/1561823.

Rojas-Rueda, D.; Morales-Zamora, E.; Alsufyani, W.A.; Herbst, C.H.; AlBalawi, S.M.(2021). Environmental Risk Factors and Health: An Umbrella Review of Meta-Analyses. International Journal of Environmental Research and Public Health, 18(2), 704. https://doi.org/10.3390/ijerph18020704.

Hall, R.M.; Earnest, G.S.; Hammond, D.R.; Dunn, K.H.; Garcia, A. (2014). A summary of research and progress on carbon monoxide exposure control solutions on houseboats. Journal of occupational and environmental Hygiene, 11(7), D92–D103. https://doi.org/10.1080/15459624.2014.895374.

Gozubuyuk, A.A.; Dag, H.; Kacar, A.; Karakurt, Y.; Arica, V. (2017). Epidemiology, pathophysiology, clinical evaluation, and treatment of carbon monoxide poisoning in child, infant, and fetus. Northern Clinics of Istanbul, 4(1), 100–107. https://doi.org/10.14744/nci.2017.49368.

Wang, Y.; Yao, C.; Xu, C. (2019). Carbon monoxide and risk of outpatient visits due to cause-specific diseases: a time-series study in Yichang, China. Environmental Health, 18, 36. https://doi.org/10.1186/s12940-019-0477-3.

Odekanle, E.L.; Fakinle, B.S.; Akeredolu, F.A.; Sonibare, J.A.; Adesanmi, A.J. (2016) Personal exposures to particulate matter in various modes of transport in Lagos city, Nigeria, Cogent Environmental Science, 2(1), 1260857. https://doi.org/10.1080/23311843.2016.1260857.

Njoku, K.L.; Rumide, T.J.; Akinola, M.O.; Adesuyi, A.A.; Jolaoso, A.O. (2016). Ambient Air Quality Monitoring in Metropolitan City of Lagos, Nigeria. Journal of Applied Science and Environmental Management, 20(1), 175‒185. http://doi.org/10.4314/jasem.v20i1.21.

Abulude, F.O.; Damodharan, U.; Acha, S. (2021). Preliminary Assessment of Air Pollution Quality Levels of Lagos, Nigeria. Aerosol Science and Engineering, 5, 275–284. https://doi.org/10.1007/s41810-021-00099-1.

[Kolawole, T.O.; Olatunji, A.S. (2023). Assessment of concentration of the potentially toxic elements and associated human health risk from particulate matter exposure along road intersections in Ibadan, southwestern Nigeria. Discovery Environment, 1, 3. https://doi.org/10.1007/s44274-023-00005-1.

Diagi, B.; Suzan, A.; Nnaemeka, O.; Ekweogu, C.; Acholonu, C.; Emmanuel, O. (2022) An Assessment of Vehicular Emission in the Vicinity of Selected Markets in Owerri, Imo State, Nigeria. Journal of Geoscience and Environment Protection, 10, 1‒12. https://doi.org/10.4236/gep.2022.101001.

Adam, M.E. (2013). Suspended Particulates Concentration (PM10) under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt). Advances in Meteorology, Article ID 457181. https://doi.org/10.1155/2013/457181.

Sarpong, S.A.; Donkoh, R.F.; Konnuba, J.K.-S.; Ohene-Agyei, C.; Lee, Y. (2021). Analysis of PM2.5, PM10, and Total Suspended Particle Exposure in the Tema Metropolitan Area of Ghana. Atmosphere, 12, 700. https://doi.org/10.3390/atmos12060700.

Wambebe, N.; M.; Duan, X. (2020). Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere, 11(8), 817. http://dx.doi.org/10.3390/atmos11080817.

About this article

SUBMITTED: 20 April 2024
ACCEPTED: 20 May 2024
PUBLISHED: 22 May 2024
SUBMITTED to ACCEPTED: 30 days
DOI: https://doi.org/10.53623/tebt.v2i1.438

Cite this article
Yahaya, T., Fagbayi, T. ., Abdulazeez, A. ., Izuafa, A. ., Abdulrahman, S. K. ., & Obadiah, C. . (2024). Assessment of Levels and Health Risks of Atmospheric Particulate Matter (PM10) and Associated Gaseous Elements in Selected Locations in Lagos, Nigeria. Tropical Environment, Biology, and Technology, 2(1), 34–43. https://doi.org/10.53623/tebt.v2i1.438
Accessed
214
Citations
0
Share this article