Skip to main content
Search for Articles:
Tropical Aquatic and Soil Pollution
Share

Search Filter

Keyword
Author
Years between
to
2016
2024

Search Results:

Search Parameters:
Keyword = human activities
Journal = Tropical Aquatic and Soil Pollution
Found 9 items.
Open Access
Characteristics of Microplastic in Commercial Aquatic Organisms
by Risky Ayu Kristanti, Wei Lin Wong, Yeti Darmayati, Ariani Hatmanti, Nilam Fadmaulidha Wulandari, Mada Triandala Sibero, Nur Fitriah Afianti, Erika Hernandes, Flavio Lopez-Martinez

Trop. Aqua. Soil Pollut. 512 views
This study aims to review the occurrence of microplastics in some commercial aquatic organisms. Microplastics are small plastic particles with a diameter of less than 5 mm. Effluent, stormwater, agricultural, and surface runoff introduce microplastic to freshwater basins. Hydrodynamics and hydrology encompass microplastics. River flow speed can cause turbulence and riverbed instability, increasing microplastic concentrations. Fish, shellfish, and crustaceans ingest microplastics in proportion to their quantity in freshwater and marine environments. Human activities cause variations in the form, color, and size of microplastics in the biota. Animals absorb microplastics through trophic transfer. Increased microplastic residence time before ingestion promotes trophic transmission. Lower food concentration and aggregation enhance microplastic retention in zooplankton guts, increasing transmission to higher-trophic-level species. Most studies show that microplastics in biota are discovered in fish and crustacean intestines and bivalve tissues. Microplastic buildup can disrupt live organisms' growth and reproduction, induce oxidative stress, obstruct the digestive system, and damage the intestine. Microplastics may harm people's health if they eat contaminated seafood that contains them, but more research is needed. Full text


Open Access
A Review on Thermal Desorption Treatment for Soil Contamination
by Risky Ayu Kristanti, Wilawan Khanitchaidecha, Gaurav Taludar, Peter Karácsony, Linh Thi Thuy Cao, Tse-Wei Chen, Noura M. Darwish, Bandar M. AlMunqedhi

Trop. Aqua. Soil Pollut. 592 views
Soil contamination is a major issue that must be prioritized, as food safety is mostly determined by soil quality. Soil quality has deteriorated significantly across the world with the continued expansion of industrial growth, urbanization, and agricultural activities. Soil contamination has become a growing issue and a barrier that must be addressed if we are concerned about re-establishing a healthy ecosystem. The activity is mostly driven by human activities, which include the use of pesticides, chlorinated organic pollutants, herbicides, inorganic fertilizers, industrial pollution, solid waste, and urban activities. While many methods have been developed to remediate significant pollutants generated by these activities, their degree of application may be constrained or inappropriate for a specific location. Parameters such as treatment duration, safety, and efficacy of soil/pollutant treatment all play a part in selecting the best appropriate technique. These technologies have been classified into three broad categories: physical, chemical, and bioremediation. This review shows and talks about thermal desorption (TD), which is a common way to clean up polluted soil. Full text


Open Access
Abundance and Characteristics of Microplastics in the Soil of a Higher Education Institution in China
by Kuok Ho Daniel Tang, Yuxin Luo

Trop. Aqua. Soil Pollut. 806 views
While microplastics have been detected in various spheres of the environment, there are few studies examining their abundance in higher education institutions, where their exposure to students and staff could raise concern. This study aims to quantify and characterise the microplastics in the soil of a higher education institution in China. Surface soil samples were collected in triplicate from nine sampling sites distributed evenly across teaching, recreational, and residential areas on campus. The soil samples were sieved with a 5 mm screen, and the fractions passing through the sieve were digested with 30% hydrogen peroxide. Microplastics were density-separated from the digested soil and observed under the microscope. ATR-FTIR was used to determine their compositions. This study reveals a higher abundance of microplastics in teaching and residential areas (150–700 items/kg and 50–650 items/kg, respectively) as compared to recreational areas (0–450 items/kg), with the highest mean abundance (516.7 items/kg) recorded for residential areas. Fibrous and fragment microplastics (31.5% and 33.3%, respectively) were most common in the soil samples, with the former more prevalent in residential areas. There were more black microplastics (36.4%) and white microplastics (29.1%) than those of other colors. Microplastics  0.5 mm constituted the largest fraction (64.3%) of total microplastics recovered and polyethylene microplastics were most abundant (35.2%). This study contributes to a better understanding of microplastic pollution in the compounds of higher education institutions, which could be positively linked to the human activities within those institutions. Full text


Open Access
Human Safety Evaluation of Heavy Metals, Physicochemical Parameters, and Microorganisms in Lagoon Water at Ikorodu Lighter Terminal in Lagos, Nigeria
by Tajudeen Yahaya, Khadijat Balogun, Mohammed Bashar Danlami, Ufuoma Shemishere, Yunusa Abdulganiyu, Olatunji Ola-Buraimo

Trop. Aqua. Soil Pollut. 292 views
Ikorodu Lighter Terminal is an important lagoon port in Lagos, Nigeria. However, the intense anthropogenic activities that take place around the port could potentially pollute the water. This study assessed the safety of human exposure to the water around the port. Samples of the water were assayed for physicochemical parameters, namely: electrical conductivity, biochemical oxygen demand (BOD), total suspended solids (TSS), total dissolved solids (TDS), pH, turbidity, hardness, calcium, chloride, sulphate, nitrite, and phosphate. Moreover, heavy metals, including lead, manganese, copper, cadmium, nickel, and chromium, were analyzed, and their values were used to estimate potential health risks. Also assayed was the presence of microorganisms. The water samples had non-permissible levels of nitrite, oil and grease, and BOD. The concentrations of the heavy metals as well as their average daily ingestion and average daily dermal exposure were within the tolerable limits, except Ni. However, their hazard quotient and carcinogenic risk via ingestion and dermal contact exceeded the tolerable limits. Safe levels of bacteria, coliforms, and fungi were detected in the water. Based on these results, the water may expose users to health hazards. There is a need for policies geared towards the safety of human exposure to the water. Full text


Open Access
Microplastics in and Near Landlocked Countries of Central and East Asia: A Review of Occurrence and Characteristics
by Kuok Ho Daniel Tang

Trop. Aqua. Soil Pollut. 505 views
The detection of microplastics in the water and sediment samples of the landlocked countries in central and eastern Asia means the relatively less populous countries are not spared from microplastic pollution. It is crucial to understand the severity of microplastic pollution in and near those countries since there are significantly fewer regional studies on microplastic pollution conducted for those countries. This review aims to systematically present the occurrence and characteristics of microplastics in and near the landlocked countries to shed light on the severity of microplastic pollution therein. It analyzed the contents of more than 38 papers to achieve its aim. Of all the landlocked countries, Mongolia has the most studies on microplastic pollution, while there are none for Turkmenistan, Afghanistan, Uzbekistan, Kyrgyzstan, and Tajikistan. For dried sediment samples, the microplastic contents ranged from 862 items/kg in the Tuul River of Mongolia to 15–46 items/kg on the Iranian side of the Caspian Sea near Turkmenistan. Lake Hovsgol in Mongolia recorded a microplastic density of 20,264 items/km2, whereas the Selenga River system had a mean microplastic density of 120.14 items/km2. Microplastics concentrations in the Caspian Sea varied, with areas near the southwest of Turkmenistan having microplastics concentrations ranging from 0.000246 items/l to 0.710 items/l. The microplastics levels in the countries are comparable to those of other regions in the world, indicating the impacts of human activities on microplastic pollution. Some microplastics might also have entered the countries through long-range transport by air and water from areas of higher human activity. Full text


Open Access
Phytoremediation Mechanism for Emerging Pollutants : A Review
by Risky Ayu Kristanti, Rose Tirtalistyani, Yien Yu Tang, Nguyen Thi Thanh Thao, Joseph Kasongo, Yureana Wijayanti

Trop. Aqua. Soil Pollut. 790 views
As a result of urbanization and industrialization, emerging pollutants have become a global concern due to contamination and their potential adverse effects on the ecosystem and human health. However, the characteristics and environmental fate of emerging pollutants remain unclear due to the limitations of current technologies. Emerging pollutants are predominantly released into the environment through anthropogenic activities and accumulate in water, soil, air, and dust. Despite their typically low concentrations in the environment, exposure to these pollutants can result in endocrine disruption and other health impacts on the human body, as well as oxidative stress in organisms. Phytoremediation is a green biotechnology that utilizes plants in association with microorganisms to mitigate pollutants in contaminated areas through various mechanisms. It represents a cost-effective and environmentally friendly approach, although its efficacy can be hindered by both the biological condition of plants and ecological factors. Moreover, phytoremediation generally requires a longer remediation timeframe compared to alternative technologies. The remediation of emerging pollutants aligns with the "green liver model" theory, which encompasses translocation, internal transformation and conjugation, and sequestration as classification categories. Presently, several challenges are being encountered in this field, including a lack of information regarding emerging pollutants and their metabolism in plants, the absence of a modeling framework and standardized monitoring practices, limitations in sampling and analysis technologies, as well as phytoremediation technologies. Therefore, further research is warranted to delve into the behavior of emerging pollutants and their interactions with plants, aiming to develop or enhance existing technologies. Additionally, the concept of phytomanagement should be considered, as it offers a sustainable approach to environmental remediation. Full text


Open Access
A Study Case on Estimation of Soil Loss and Sediment Yield in Curtin University, Malaysia
by Hui Yee Ngieng, Leong Kong Yong, Striprabu Strimari

Trop. Aqua. Soil Pollut. 664 views
Because of human activities, soil erosion has been one of the most concerning issues in Malaysia in the past decades. This study aimed to estimate the amount of soil loss and sediment yield at Curtin University, Malaysia by using the Revised Universal Soil Loss Equation (RUSLE) and the Modified Universal Soil Loss Equation (MUSLE), respectively. The parameters of RUSLE include rainfall erosivity factor (R), soil erodibility factor (K), slope length factor (L), slope steepness factor (S), cover-management factor (C) and support practice factor (P). The rainfall data (10 years) from the Sarawak Meteorological Department was used to determine the R-factor. The K-factor was determined by sieve analysis, hydrometer analysis, the Standard Proctor Test (SPT), and organic content testing. The L-and S-factors were performed by measuring on site and using Google Earth. The C-and P-factors were based on the ground surface cover condition (bare soil in this study). In the MUSLE, the runoff factor comprises V and Qp, while the other parameters are the same as in the RUSLE. The runoff depth, V, is equivalent to the rainfall intensity. Rainfall intensities were recorded by using a rain gauge. The highest rainfall intensity was used for runoff depth. The Rational method has been utilized to calculate Qp. The amount of soil loss estimated was 119.97 tons/ha/year and the sediment yield amount estimated was 0.76 ton/storm event in Curtin University, Malaysia. Full text


Open Access
Soil Remediation Applications of Nanotechnology
by Risky Ayu Kristanti, Rachael Mei Yen Liong, Tony Hadibarata

Trop. Aqua. Soil Pollut. 1202 views
With the growth of urbanization, the anthropogenic activities have increased and thus increase occurrence of soil contaminants. In order to eliminate the contaminants in soil environment, the application of nanotechnology for soil remediation has become a great concern in the world. This review discussed about the fate of contaminants in soil environment; the mechanisms of nanotechnology with various types of nanomaterials for the soil remediation; the advantages and disadvantage of nanomaterials towards the terrestrial organisms, human health as well as the soil environment; and the challenges of using nanotechnology for soil remediation. The major challenges of nanotechnology are the negative effect of the nanoparticles towards the microbes. The toxicity in nanomaterials will affect the microorganisms and inhibit the enzymes activities in the soil environment. Keywords: Soil Full text


Open Access
Assessment of Anthropogenic Impact on Ecosystem Service Safety of Agboyi River in Lagos, Southwestern, Nigeria
by Tajudeen Olanrewaju Yahaya, Titilola Fausat Salisu, Abdulganiyu Yunusa, Emmanuel John, Abdulrahman Bashir Yusuf, Abdulrazak Karabonde Umar, Oluwatosin Abe

Trop. Aqua. Soil Pollut. 151 views
The Agboyi River in Lagos, Nigeria provides important ecosystem services; however, anthropogenic activities are polluting the river, necessitating periodic monitoring. This study assessed the heavy metal content (lead, cadmium, chromium, copper, and arsenic) in water samples from the river. Additionally, we evaluated various physicochemical parameters, including pH, total dissolved solids (TDS), conductivity, hardness, magnesium, calcium, chloride, sulfate, and nitrate. The values of each heavy metal were used to calculate human average daily ingestion (ADI), average daily dermal exposure (ADDE), hazard quotient (HQ), and carcinogenic risk (CR). The physicochemical analysis revealed non-permissible levels of TDS, electrical conductivity, alkalinity, hardness, magnesium, calcium, sulfate, nitrate, chloride, and phosphate. The heavy metal analysis showed intolerable levels of lead, arsenic, cadmium, chromium, and copper. The ADIs for the heavy metals were within the recommended dietary intake (RDI), but their ADDEs exceeded the RDI, except for chromium. The HQ and CR for all heavy metals exceeded recommended limits. Seasonal variations were observed in the physicochemical parameters, with TDS, turbidity, acidity, nitrate, and phosphate being higher in the wet season, while other parameters were higher in the dry season. The water poses health hazards to users, indicating the need for river remediation. Full text


1 - 9 of 9 items