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ABSTRACT: Urban land degradation poses a growing challenge in rapidly developing countries 

like Indonesia, where population growth and limited space drive uncontrolled land cover changes. 

This study aims to detect land degradation in urban areas through spatial modelling and semi-

automatic classification of multi-temporal remote sensing imagery. Landsat-5 Thematic Mapper 

(TM) image from year 2011 and Landsat-9 Operational Land Imager collection 2 (OLI-2) image 

from year 2023 data were acquired from the The United States Geological Survey (USGS). Image 

pre-processing included band stacking, subsetting, and enhancement to improve visual 

interpretation. Semi-automatic supervised classification was applied to map seven land cover 

classes: agricultural dry land, rice field, forest, plantation, non-agricultural land, water body, and 

settlement. Training data and validation were supported by Google Earth Pro, official sources, 

and field surveys using random sampling. Change detection analysis revealed a 1664.65 ha 

increase in industrial areas, accompanied by significant reductions in rice fields (−1726.92 ha) 

and dry farmland (−1644.57 ha). The classification accuracy reached 80.24% and 75.11%, with 

kappa coefficients of 0.76 and 0.65, respectively. Results indicate that urban expansion is a key 

driver of land degradation, particularly through the loss of productive agricultural land. This 

research demonstrates the effectiveness of remote sensing-based spatial modelling and 

classification techniques for monitoring urban land degradation and informing sustainable land 

use planning. 

KEYWORDS: Agricultural land; land degradation; landsat imagery; remote sensing; semi-

automatic classification 

1. Introduction 

Increased competition for land use between the agricultural and non-agricultural sectors was a 

major driver of land degradation in urban areas. The expansion of industrial zones, roads, and 

other infrastructure led to the large-scale conversion of productive agricultural land, 

particularly in rapidly urbanizing regions [1, 2]. Industrialization, followed by accelerated 
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urban growth and population increase, emerged as the dominant cause of agricultural land loss 

[3, 4]. The development of new industries attracted migration, which resulted in population 

concentration and the repurposing of land for settlement [5]. This urban expansion not only 

reduced the extent of arable land but also accelerated environmental degradation, disrupted the 

ecological balance, and contributed to the decline in soil quality and land productivity. These 

changes posed significant challenges to food security and sustainable land use in urban 

environments [6‒8]. The continued conversion of agricultural land to urban use resulted in both 

direct and indirect forms of land degradation, threatening the long-term sustainability of urban 

ecosystems and the resilience of food systems [9, 10]. In this context, land degradation was 

defined as the long-term reduction in land productivity and ecological function, detectable 

through declines in vegetation cover, increases in bare soil, and shifts in land cover classes 

toward less productive states. Land degradation involved a general decline in cropland's ability 

to provide ecosystem goods and services. In our analysis, degradation was detected using 

Landsat-derived classification results, where persistent transitions from vegetated to barren or 

degraded classes over the study period were identified as indicators of degradation [10]. 

Monitoring and detecting these changes were therefore critical for effective spatial planning 

and land degradation mitigation in urban landscapes. 

Indonesia underwent rapid urbanization, with the urban population increasing from 

22.3% in 1980 to 56.7% in 2020, and projected to reach 63.4% by 2030. Cilegon City in Banten 

Province, known as the gate of Java Island, was a region with a developing economy, a dense 

population, and fast urbanization [11]. The urbanization rate increased by about 2.44 times in 

10 years, clearly exceeding the national average. While urban growth drove economic and 

social development, it also placed considerable pressure on natural resources and degraded 

critical ecological services [12, 13]. Cilegon City, in particular, underwent significant land 

cover transformations, including the widespread conversion of cropland, forests, and wetlands 

into residential and industrial zones. Past studies documented these changes, such as land use 

analysis in the Banten Bay coastal area and land cover change in Cilegon from 1992 to 2003 

[14], both of which highlighted significant ecological disruption due to rapid urban expansion. 

However, the city still lacked comprehensive and accurate land cover change detection 

systems. Conventional monitoring methods, which relied on manual surveys and descriptive 

analysis, were time-consuming, costly, and limited in spatial and temporal accuracy. These 

limitations highlighted the critical need for advanced spatial modelling and remote sensing 

techniques to effectively detect and assess land degradation in urban environments like 

Cilegon. 

Remote sensing technologies became increasingly essential for monitoring urban growth 

and its impacts on environmental sustainability. Satellite imagery provided timely, accurate 

data on land cover dynamics, including the conversion of agricultural land into urban areas 

[15]. This information enabled policymakers and planners to identify areas at risk of land 

degradation and to develop strategic interventions for preserving agricultural zones. Remote 

sensing supported informed decision-making in sustainable land use planning, helping to 

maintain ecological balance [16]. Over the past two decades, remote sensing applications 

expanded significantly, with various models and techniques developed to monitor land cover 

changes and detect environmental degradation [11, 12]. The integration of spectral reflectance 

data allowed scientists to assess urban expansion and land transformation with increasing 

precision [17, 18]. Furthermore, satellite imagery and diverse sensor technologies were widely 
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used to monitor vegetation indices, crop conditions, and ecosystem health across different 

landscapes [18]. These advancements showed the potential of remote sensing and spatial 

modelling in detecting land degradation and supporting sustainable urban development. 

Advancements in image processing and classification techniques using remote sensing 

significantly enhanced land cover mapping and the detection of land cover changes [23]. Land 

cover maps were critical for various applications, including land use policy formulation, 

agricultural monitoring, urban planning, nature conservation, and ecosystem assessment. Land 

cover classification was typically conducted using satellite imagery and supervised 

classification techniques that relied on user-defined training data to distinguish among land 

cover types [23, 24]. Recent studies applied semi-automatic classification based on the random 

forest algorithm to improve efficiency and reproducibility in land cover classification [25, 26]. 

These tools offered functionalities such as radiometric correction, post-classification accuracy 

assessment, and change detection analysis [26]. 

The aims of this research were to classify land cover types, assess the extent of 

agricultural land conversion, and detect signs of land degradation caused by urban expansion 

utilizing semi-automatic classification based on the random forest algorithm applied to 

Landsat-5 Thematic Mapper (TM) and Landsat-9 Operational Land Imager Collection 2 (OLI-

2) satellites. The accuracy of the classification results was evaluated using ground truth data, 

official land use sources, and statistical metrics such as overall accuracy and the Kappa 

coefficient. A key novelty of this study lay in its integration of open-source, semi-automatic 

classification tools with spatial modelling to provide an accessible and cost-effective method 

for monitoring urban land degradation. 

2. Methodology 

2.1.Study area. 

Based on its geographical location, the City of Cilegon was situated at the far western end of 

Java Island, lying between 5º52’24”–6º04’07” South and 105º54’05”–106º05’11” East. 

Administratively, the boundaries of the City of Cilegon were as follows: the north, east, and 

south sides bordered Serang Regency, while the west side bordered the Sunda Strait. The city 

consisted of coastal areas in the north and west, rural areas in the south, and urban areas in the 

north and the city center. The urban areas were equipped with infrastructure facilities that 

supported socioeconomic development, while residential areas were concentrated in the city 

center (Figure 1). 
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Figure 1. The study area in Cilegon City, Banten Province, Indonesia. 

2.2. Framework of the research. 

Two sets of land cover map classifications were carried out for two different years (2011 and 

2023) using Landsat satellite imagery. The satellite data were sourced from the United States 

Geological Survey (USGS) website, which provides open access to users. The images were 

acquired in the same season to ensure comparability. Despite the twelve-year gap, this approach 

ensured that vegetation and agricultural conditions were similar. Images from Landsat-5 TM 

and Landsat-9 OLI-2 were selected for analysis. The satellite images were processed using the 

open-source software QGIS 3.22, which included atmospheric correction and sub-setting of the 

study area. A false-color composite representation of the multispectral imagery was then used 

to identify land cover classes (Figure 2). Supervised classification methods, specifically semi-

automated classification based on the random forest algorithm, were applied for land cover 

classification. Accuracy assessments were performed on both images to evaluate classification 

performance. When the accuracy evaluation results were acceptable, the generated maps were 

used to detect post-classification changes. 

 
Figure 2. Framework of the research. 

 

2.3. Data pre-processing. 

Images from Landsat-5 TM and Landsat-9 OLI-2 were selected for analysis. The available 

Landsat-5 TM and Landsat-9 OLI-2 data for the study region were used. Based on the mission 

timeline of each Landsat sensor, Landsat-5 TM recorded images on 8 June 2011, and Landsat-

9 OLI-2 recorded images on 19 July 2023. The images were selected from the same season to 

ensure comparable vegetation conditions. Landsat-5 TM and Landsat-9 OLI-2 had a spatial 

resolution of 30 m with seven and eleven spectral bands, respectively (Table 1). 

Table 1. Remote sensing datasets. 

 Satellite  Images Sensors Mission Timeline Acquired Time 

Landsat 5 

 

Thematic Mapper (TM) March 1984- January 2013 8th June 2011 

 

Landsat 9 Operational Land Imager- 

Colletion 2 (OLI-2) 

September 2021- 

Till Date 

19th July 2023 
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The satellite images were processed using the open-source software Quantum 

Geographic Information System (QGIS) 3.22. The preprocessing included atmospheric 

correction and sub-setting of the study area. An accuracy assessment was performed to evaluate 

land classification performance. Landsat Level-2 files were directly downloaded from the 

United States Geological Survey (USGS). The Digital Number (DN) values from the original 

satellite data were converted into Top-of-Atmosphere (TOA) reflectance values. The 

preprocessing involved converting DN to radiance, and subsequently radiance to TOA 

reflectance, for both Landsat-5 TM (Table 2) and Landsat-9 OLI-2 (Table 3). Atmospheric 

correction was then conducted by converting TOA reflectance to surface reflectance in QGIS. 

Radiometric calibration and dark object subtraction methods were applied to minimize 

atmospheric scattering effects, thereby improving the accuracy and comparability of multi-

temporal classification results. This process assumed that certain pixels in the imagery had 

near-zero reflectance; the apparent reflectance of these dark objects was attributed to 

atmospheric path radiance, which was then subtracted from all pixels. This adjustment 

enhanced comparability between multi-temporal datasets and improved land cover 

classification accuracy. Following preprocessing, supervised classification was performed 

using the Semi-Automatic  

Table 2. Spatial and spectral resolution of Landsat 5 TM. 

Bands 
Wavelength 

(micro-meters) 
Resolution (meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120* (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.08-2.35 30 

 

Table 3. Spatial and spectral resolution of Landsat 9 OLI-2. 

Bands 
Wavelength 

(micro-meters) 
Resolution (meters) 

Band 1 - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.532 - 0.589 30 

Band 4 - Red 0.636 - 0.672 30 

Band 5 - Near Infrared (NIR) 0.850- 0.879 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.565 - 1.651 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.105 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100  

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100  

 

Classification Plugin (SCP) in QGIS, based on the Random Forest (RF) algorithm. RF, 

a machine learning ensemble method known for its robustness and high classification accuracy 

under diverse conditions [38], was applied to the processed imagery. Training samples (regions 

of interest, ROIs) were created for seven land cover classes: rice fields, dryland agriculture, 

forests, plantations, urban areas, water bodies, and non-agricultural land (Table 4). ROIs were 

digitized using three different false-color composite schemes to enhance class separability. 

Training samples (signatures) serving as ROIs were prepared using these composite channel 
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combinations before supervised classification was conducted (Figure 3). To identify land cover 

objects, the study applied three distinct false-color composite schemes. 

 

Table 4. Description of land cover classes. 

No  Class Name Description home 

1  Rice field Agriculture field specific for paddy plant 

2  Agriculture dry field Greenhouses, horticulture farms, and other  

3  Forest Forests with open canopies, including green open space and urban forest 

4  Plantation Agriculture crops other than rice 

5  Urban area Human settlement and transportation infrastructure, as well as industrial infrastructure 

6  Water bodies Continental water surfaces (lake, water, dam, and river) 

7  Non-agricultural land Areas devoid of any vegetation cover and characterized by exposed rocks. 

 

 
Figure 3. Different colour composites of Landsat-9 OLI-2 images used to create a ROI of different land classes 

as training samples: a. Natural Color, b. RGB = 5-4-3 c. RGB = 5-6-4, d. RGB = 6-5-4. 

2.4.  Spatial modelling on raster-based classification. 

In this study, spatial modelling was performed through raster-based classification using 

machine learning, specifically the Random Forest (RF) algorithm. Landsat imagery was pre-

processed into reflectance bands and ancillary indices, which were then used as inputs for 

supervised learning to classify land cover. Each pixel was treated as an observation, with 

predictor variables derived from spectral bands and calculated indices. The classification model 

followed a decision-tree-based approach. The RF algorithm was an ensemble learning method 

that predicted outcomes by integrating multiple decision trees to perform classification [24, 
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25]. It effectively handled high-dimensional data, accommodated missing values, and reduced 

overfitting. It was widely applied in various domains, including remote sensing and image 

classification in QGIS. The RF classifier combined predictions from many decision trees to 

assign a class label to each pixel. Each decision tree was trained on a fraction of the training 

data, with bootstrap samples selected randomly, and only a subset of the available features 

considered at each split [26]. This approach made the RF classifier versatile, robust, and well-

suited for handling mixed pixels and complex land cover patterns. 

2.5. Land cover change. 

Land cover change between 2011 and 2023 was calculated using the following equation (L): 

𝐿 =  
𝑈𝑏−𝑈𝑎

𝑈𝑎
 𝑥 

1

𝑇
 𝑥 100%                                                               (1) 

where Ua is the area (ha) of a particular land class at the beginning, Ub is the area (ha) of the 

land class at the end, and T is the period of analysis. This equation calculated the rate of land 

cover change between the two survey years. Multiplication by 100% expressed the change as 

a percentage. Land cover change detection was then performed using the post-classification 

change detection tool in ArcGIS®. Data on total land cover change and unchanged areas 

between 2011 and 2023 were compiled into a land cover change detection map for the period 

2011–2023. 

2.6. Accuracy assessment of land cover classification. 

Accuracy evaluation of classification maps was an essential step for validating the classified 

images. Accuracy assessments were conducted for the 2011 and 2023 classified images to 

determine the reliability of the derived information. A stratified random sampling method was 

used to compare the reference images with the classified images at randomly selected points. 

A total of 252 points served as reference data for the accuracy evaluation, and classification 

accuracy was quantified using the nonparametric kappa test. Independent validation datasets 

were also inspected for each period. The accuracy of classification was calculated using a 

confusion matrix with common statistical measures: producer accuracy (PA), user accuracy 

(UA), overall accuracy (OA), and kappa statistics. Area-specific accuracy was further 

quantified by adjusting the estimated land cover area based on classification error ratios [39]. 

The stratified evaluation method also enabled quantification of area estimation uncertainty 

based on the 95% confidence intervals associated with each class. 

3. Result 

The accuracy assessment of the classified land cover maps was carried out through comparison 

with reference data. The reference data were generated using a combination of random sample 

points, field identification, and imagery from Google Earth Pro (Figure 4). Ground truth data 

obtained from these sources were then used to validate the classification results. An overall 

accuracy evaluation for Cilegon City was conducted using the random forest classification 

method, as summarized in Tables 5–6. 
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Figure 4. Reference map from ©2023 Google 2023: (a) forest, (b) rice field, (c) settlement, (d) waterbody. 

Table 5. Confusion matrix of the land cover 2011 for random forest classifier. 

 Land Cover 
References 

RF AD PL FR UR WB NA Total 

C
la

ss
if

ie
d

 

Rice field (RF) 49 1 1 0 0 0 17 68 

Agriculture dry land (AD) 6 12 0 0 0 0 1 19 

Plantation (PL) 6 1 43 0 0 0 0 50 

Forest  (FR) 0 4 19 1227 0 0 0 1250 

Urban  (UR) 0 3 0 0 36 3 4 46 

Waterbodies  (WB) 0 0 0 0 0 80 0 80 

Nonagricultural land (NA) 10 0 0 2 0 9 14 35 

 Total 71 21 63 1229 36 92 36 1548 

Overall Classification Accuracy = 83.15%, Overall Kappa Statistics = 0.76. 

Table 6. Confusion matrix of the land cover 2023 for random forest classifier. 

 Land Cover 
References 

RF AD PL FR UR WB NA Total 

C
la

ss
if

ie
d

 

Rice field (RF) 18 12 0 31 9 0 15 82 

Agriculture dry land (AD) 18 16 4 11 18 0 15 82 

Plantation (PL) 29 4 72 16 0 0 2 123 

Forest  (FR) 20 1 15 1324 1 0 48 1409 

Urban  (UR) 4 0 0 0 127 0 26 157 

Waterbodies  (WB) 0 0 0 0 0 70 0 70 

Nonagricultural land (NA) 73 27 6 16 4 0 56 182 

 Total 162 60 97 1398 159 70 162 2108 

Overall Classification Accuracy = 80.41%, Overall Kappa Statistics = 0.63. 

Visual representations of the classified land cover for 2011 and 2023 are shown in Figure 

5. In 2011, the spatial pattern was dominated by agricultural land and rice fields. By contrast, 

the 2023 data indicated a marked increase in urbanization within Cilegon City. Specifically, 

non-agricultural land increased by 60.08% and urban areas expanded by 3.70%, while rice 

fields, dry agricultural land, and plantations decreased by 3.12%, 0.90%, and 2.36%, 

respectively (Figure 6). A graphical comparison further emphasized the decline in rice fields 

and the surge in urbanization between 2011 and 2023 (Figure 7). The land cover change 

classification revealed that urban areas expanded by approximately 1276.73 hectares between 

2011 and 2023. Over the same period, rice fields decreased by 1181.36 hectares and dry 

agricultural land by 365.81 hectares. Conversely, non-agricultural land increased substantially 

by 1664.65 hectares (60.08%) (Table 7). These changes suggested that land previously used 
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for agriculture was increasingly converted for other purposes, including commercial and 

industrial development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Land cover change map in Cilegon city using random forest classifier. 

 

 
Figure 6. Land cover change rate (RS) RF-based land cover. 
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Figure 7. Land cover change data RF-based land cover. 

 

Table 7. Results of the land cover classification of 2011 and 2023. 

LULC 2011 2023 Land cover 

change (ha) 

Land cover 

change rate (%) Area (km2) Area (ha) Area (km2) Area (ha) 

Rice field  31.60  3159.71 19.78 1978.35 -1,181.36  -3.12  

Agriculture Dry 

Land 

 33.73  3373.01 30.07 3007.20 -365.81  -0.90  

Plantation  35.24  3524.20 25.26 2526.03 -998.17  -2.36  

Forest  35.88  3588.07 38.22 3822.34  234.27   0.54  

Urban  28.78  2878.43 41.55 4155.16  1,276.73   3.70  

Waterbodies  7.93  793.44 1.63 163.12 -630.32  -6.62  

Non-Agricultural 

Land 

 2.31  230.88 18.95 1895.53  1,664.65   60.08  

4. Discussion 

This study demonstrated the effectiveness of semi-automatic classification techniques in 

detecting land degradation and monitoring land cover change in urban areas. By utilizing multi-

temporal datasets from Landsat-5 TM and Landsat-9 OLI-2, we mapped and assessed the 

spatial dynamics of land cover change in Cilegon City between 2011 and 2023. The 

classification models performed reliably for both years, with higher accuracy observed in the 

2011 dataset, possibly due to clearer spectral separation among land cover classes during that 

period. A key finding of this study was the significant decline in agricultural land, particularly 

rice fields, dryland agriculture, and plantations, over the twelve-year period. This decline 

reflected an alarming trend of urban expansion encroaching upon fertile agricultural areas. The 

transformation of these productive lands into built-up areas not only threatened food security 

but also undermined the ecological functions provided by these landscapes [28]. These findings 

supported growing concerns over the vulnerability of peri-urban agricultural zones to urban 

sprawl. We observed a notable increase in non-agricultural land and urban settlements, 

highlighting a shift toward land allocated for infrastructure, industrial use, sand mining, and 

other non-agricultural functions. This trend was strongly correlated with demographic and 

economic drivers, including population growth, migration for employment, and industrial 
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development. The strategic location of Cilegon as a gateway to Java, combined with its 

proximity to Jakarta, intensified these pressures and accelerated land conversion in lowland 

and coastal areas traditionally used for seasonal agriculture. 

Interestingly, forest cover also expanded during the study period, signifying a positive 

trend toward the preservation and growth of vegetated areas. This increase may have resulted 

from active reforestation efforts or governmental policies promoting ecosystem restoration. 

The Cilegon Environment Agency reported similar increases in forest and vegetation areas, 

likely linked to the Regional Plan of Cilegon City, which mandated that at least 30% of the 

total area be maintained as green open space. This highlighted the importance of land-use 

policy in managing urban ecological sustainability. The findings emphasized the value of 

satellite-based land cover analysis for urban environmental monitoring. Remote sensing 

provided a rapid, cost-effective, and scalable approach for detecting land use changes, 

especially in regions experiencing rapid urban transformation. When integrated into spatial 

models, these data supported policy development and decision-making aimed at mitigating 

land degradation and preserving ecosystem services.  

In coastal cities like Cilegon, urbanization posed unique risks due to the ecological 

sensitivity of coastal zones. Conversion of coastal land to urban use led to biodiversity loss, 

increased surface runoff, pollution, and disruption of coastal ecosystems. The loss of 

agricultural land observed in this study had direct implications for land degradation. 

Conversion of cropland to barren or degraded land often caused declines in soil organic matter 

and nutrient availability, leading to chemical degradation. The removal of vegetation exposed 

soils to wind and water erosion, accelerating physical degradation. Furthermore, replacing 

diverse agricultural systems with less productive or non-vegetated surfaces reduced habitat 

availability and ecosystem services, contributing to ecological decline. These impacts were 

exacerbated by climate change and sea-level rise, underscoring the urgency of sustainable 

urban planning strategies. Approaches such as green infrastructure, coastal zone management, 

and smart growth principles should therefore be prioritized to balance development needs with 

environmental integrity. When compared with previous studies, our findings aligned with 

research by Gandharum et al. [29], who reported rapid agricultural land degradation in peri-

urban areas of West Java driven by industrial expansion. Similarly, Gandharum et al. [30] 

documented that urban growth in coastal Indonesian cities often targeted productive 

agricultural land due to accessibility and flat terrain. However, our study demonstrated that 

integrating multi-temporal Landsat imagery with semi-automatic classification in QGIS 

provided greater spatial detail than earlier manual methods. This approach captured subtle land 

cover transitions, including secondary vegetation growth and small-scale reclamation projects. 

Such findings underscored the importance of open-source tools and free satellite datasets for 

producing robust, reproducible monitoring frameworks to guide sustainable land management. 

Overall, the spatial modelling and remote sensing-based land cover analysis presented in this 

study provided a valuable tool for detecting land degradation and guiding sustainable urban 

development. The framework was replicable for other rapidly urbanizing regions and 

contributed to the growing body of knowledge on land system science and sustainable land 

management. 
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5. Conclusion 

Understanding classification processes was crucial for effectively monitoring land cover 

change. Geospatial analysis of land cover dynamics played an important role in monitoring 

systems, enabling the detection of long-term changes that are vital for sustainable land 

management. Land cover change and urban expansion posed significant risks to food security 

and environmental protection, but the application of satellite remote sensing in land-use 

monitoring provided an opportunity to inform and reform policy, particularly at the local 

government level. In this study, a decision support system was developed using Landsat-5 TM 

and Landsat-9 OLI-2 datasets. The use of semi-automatic classification tools ensured high 

accuracy in land-use management and decision-making. Designed to be user-friendly, this 

approach required only basic GIS knowledge, making it accessible to local governments and 

non-specialists. Pre-processing could be conducted with open-source software such as QGIS, 

increasing its applicability. The method was reliable, repeatable, and suitable for use at local, 

regional, and national levels. However, limitations were noted in moderate-resolution imagery 

such as Landsat, particularly in heterogeneous urban areas where mixed pixels were common. 

Features smaller than a single pixel could not be effectively detected, posing challenges for 

fine-scale monitoring. Future research should incorporate higher-resolution satellite datasets 

and advanced machine learning techniques to overcome these limitations. The proposed 

integrated decision-making model could be recommended to Indonesian policy planners. 

National strategies should not only protect agricultural land in Java but also establish new 

agricultural zones outside the island to ensure food security and self-sufficiency. In Cilegon, 

the observed land cover changes were consistent with the City’s Spatial Plan, suggesting 

compatibility between current urban expansion and existing planning frameworks. Future 

applications should integrate high-resolution imagery (e.g., Sentinel-2) and advanced 

classification algorithms, particularly in heterogeneous landscapes where mixed pixels are 

prevalent. Combining Landsat with higher-resolution datasets would enhance classification 

accuracy and policy relevance in rapidly urbanizing areas. Incorporating socio-economic and 

demographic datasets into spatial analysis would further enable comprehensive scenario 

modelling, allowing policymakers to anticipate land-use conflicts and design proactive 

mitigation strategies. Such outputs could directly support local governments, urban planners, 

and environmental agencies in zoning, agricultural land preservation, and targeted restoration 

programs to mitigate land degradation. 
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