
 

27 
 

Research Article 

Volume 4(1), 2024, 27‒42 

https://doi.org/10.53623/tasp.v4i1.398  

Stabilization of Pb, Cu, and Zn in Phytoaccumulator Ash 

in Calcined Clay-based Geopolymers and Potential 

Application 

Samuel Sunday Ogunsola1,2*, Adedeji Adebukola Adelodun3, Mary Bosede Ogundiran1 

1Analytical/Environmental Unit, Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria 
2Department of Chemistry and Biochemistry, Florida International University, Miami 33199, United States 
3Department of Marine Science and Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria 340001 

*Correspondence: samogery1250@gmail.com 

SUBMITTED: 6 January 2024; REVISED: 4 April 2024; ACCEPTED: 7 April 2024 

ABSTRACT: Following phytoremediation, the disposal of accumulating plants 

(phytoaccumulators) is challenging because the accumulated metals could leach back into the 

soil if not properly managed. Therefore, this study aims to use calcined clay (CC)-based 

geopolymer to stabilize Pb, Cu, and Zn in a phytoaccumulator (Sporobolus pyramidalis) ash 

(PA). Additionally, the effect of adding PA on the setting time, mechanical and heavy metals 

leaching properties of the geopolymers was investigated, to determine their environmental 

suitability and potential applications. Mixed proportions of CC (85-100%) and PA (5% - 15%) 

were used to produce geopolymers, using 8 M NaOH/Na2SiO3 (1:1) as an alkaline activator. 

The geopolymers were cured for 7 and 28 days at ambient temperatures. Thermograms showed 

the dehydroxylation of kaolinite at 450-650 °C. X-ray flourescene (XRF) analysis showed 

CC’s predominant oxides as SiO2 (53.1%) and Al2O3 (41.4%), while PA exhibited SiO2 

(46.6%), CaO (13.8%), PbO (1.30%), ZnO (0.28%), and CuO (0.04%). Thermal treatment 

eliminated most FTIR bands associated with kaolinite, converting crystalline kaolinite into 

amorphous metakaolinite. Geopolymer setting time ranged from 75 min (100% CC) to 111 min 

(85% CC). Furthermore, elevated Cao content in the PA resulted in the geopolymer’s early 

strength development. However, the compressive strength decreased as PA quantity increased, 

with 95% CC-PA exhibiting maximum strength (22.5 ± 0.2 MPa) after 28 days. Further tests 

confirmed that 95% and 90% CC-PA geopolymer effectively stabilized Pb and Cu. Fabricated 

geopolymers met the ASTM (C62-17) Specification Standard for building brick, indicating 

their suitability as a waste-based construction material under controlled conditions.  

KEYWORDS: Phytoremediation; Sporobolus pyramidalis; phytoaccumulator ash; calcined 

clay-based geopolymer; waste-based construction material  

 

1. Introduction 

Due to ever-growing industrialization and inappropriate waste management, heavy metal 

pollution has become an incessant global problem. Unlike organic pollutants, heavy metals are 
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non-biodegradable; hence, they are environmentally refractory [1, 2]. Eventually, these metals 

biomagnify along the food chain, making man the terminal target. Even at trace concentrations, 

they are hazardous to human health [3, 4]. For instance, the regulatory limit for lead (Pb) and 

copper (Cu) in drinking water, as defined by the US Environmental Protection Agency (EPA), 

is 0.05 mg/L and 1.3 mg/L, respectively [5, 6]. Additionally, the World Health Organization 

(WHO) recommends safe limits for Pb in wastewater and soils used for agriculture at 0.01 

mg/L and 0.1 mg/L, respectively [7]. Therefore, various scientific efforts have effectively 

removed them from the environment. Such efforts include the use of physical [8, 9], chemical 

[3, 10], and biological [11, 12] remediation methods.  

One of the economically viable, cost-effective, and environmentally benign technologies 

to mitigate heavy metal pollution in soils is phytoremediation [13‒18]. Phytoremediation is a 

green technology whereby plants (i.e., phytoaccumulators) partially or completely remediate 

contaminated sites [13, 14, 17, 19]. Usually, various plant’s physical and biological properties 

are exploited for this purpose [20]. If the accumulators are properly managed, polluted soils 

can be effectively restored to their “status quo”. After the advent of phytoremediation, 

researchers have raised concern regarding the death of accumulator plants on-site or during 

their transfer to alternate environments for disposal. These could lead to the release of 

accumulated metals back into the soil [21, 22], causing significant soil and groundwater 

pollution [3, 23]. Therefore, the pressing need for techniques to stabilize or immobilize 

phytoaccumulated metals has become exigent. One such technique is the use of geopolymers. 

Primarily, geopolymers were developed as a substitution for Ordinary Portland Cement 

(OPC), with the main goal of diminishing the excessive release of CO2 associated with the 

production of OPC. This approach also sought to curtail the consumption of natural resources 

and energy expended in its production [24], Additionally, geopolymers have demonstrated a 

stabilization/immobilization mechanism akin to the OPC binding processes for encapsulation 

[25]. However, they show superior chemical and physical properties in compressive strength, 

durability over a long time, resistance to fire and acid attacks, structural integrity, and shrinkage 

resistance. All these properties depend on the starting material and the processing condition 

[26].  

Over the past few decades, researchers have immensely explored the utilization of 

geopolymers for heavy metal stabilization/immobilization purposes in waste materials [25, 27‒

32]. Geopolymers are amorphous equivalents of zeolitic materials usually produced from a 

reaction that involves alkali activation of aluminosilicate materials, such as metakaolin clay, 

blast furnace slag, and fly ash. The reaction yields an aluminosilicate gel that is alkaline in 

nature, exhibiting a three-dimensional solid structure wherein both Si and Al are coordinated 

in tetrahedral arrangements [33‒35]. During heavy metal stabilization [18, 36],  aluminosilicate 

materials, which might include waste materials, are alkali activated. In this process, binders are 

produced and subsequently mixed with hazardous wastes to reduce the leaching of 

contaminants, transforming the hazardous waste into a more environmentally suitable form for 

disposal on land or use in construction. For instance, Ogundiran et al. [36] used waste 

aluminum anodizing etching solution (AES) as an activator to produce fly-ash geopolymers in 

place of the common silicate solution. Their result revealed that heavy metals were well 

immobilized in the fabricated binder. El-Eswed et al. [37] utilized kaolin/zeolite-based 

geopolymers to stabilize Pb2+, Cd2+, Cu2+, and Cr3+. Earlier, Phair et al. [38] also stabilized Pb 

and Cu in fly-ash-based geopolymer. 



Tropical Aquatic and Soil Pollution 4(1), 2024, 27‒42 

29 
 

Majorly, geopolymers have garnered attention for Pb immobilization because Pb 

negatively impacts the hydration and setting of other binders like OPC [39]. This phenomenon 

is attributed to developing impermeable layers around the clinker grains [40]. Several 

observations have been published to explain the mode of heavy metal (specifically Pb) 

immobilization in geopolymers. Pandey et al. [41] suggested that the elevated synthesis pH 

caused the formation of insoluble metal-hydroxides, which were then enclosed within the 

amorphous aluminosilicate framework of the geopolymers. Many authors have reported the 

same opinion [25,  28, 29]. Pb may also precipitate as lead-silicate [40] or participate in charge 

equilibrium by substituting for Na+ within the structure [25, 42]. According to Cheng et al. 

[43], during diffusion into geopolymer, the Pb2+ could stay entrapped in the pores, reducing its 

leachability. Van Jaarsveld et al. [44]  reported that the immobilization of Cu and Pb in fly ash-

based geopolymer could be due to chemical bonding, physical encapsulation, and chemical 

adsorption.  

Furthermore, it has been reported that geopolymers exhibit considerable immobilization 

capacity for Zn (II) [45‒47, 49]. Li et al. [1] synthesized geopolymer from electrolytic 

manganese residue and lead-zinc smelting slag. The synthesized geopolymers were 

successfully used to immobilize Pb2+ and Zn2+. The authors reported that the geopolymers with 

1% Pb exhibited the highest compressive strength of 28.5 MPa after seven days of curing. Most 

authors believed that physical encapsulation is the leading cause of heavy metal immobilization 

in geopolymers [25, 28, 29, 38, 50, 51]. However, a contrary opinion was reported [48]. The 

team hypothesized that Pb and Cu serve to offset the negative charge associated with tetrahedral 

Al within the geopolymer frameworks, with no emphasis on physical encapsulation. Therefore, 

the precise mechanism for immobilizing heavy metals in geopolymers remains incomplete [24, 

45, 50]. Nevertheless, several factors could affect the immobilization of heavy metals in 

geopolymers [24]. These factors encompass the features of heavy metals and their forms, the 

attributes of the source materials, and the pH and type of alkali activator used. 

Aside from heavy metal immobilization, geopolymers have also reportedly been used to 

immobilize/stabilize toxic and radioactive wastes [51, 53‒55]. To our knowledge, there have 

been no reports regarding the utilization of geopolymers for the stabilization or immobilization 

of phytoaccumulated heavy metals. Therefore, this research aimed to present the first attempt 

at using CC-based geopolymer to stabilize and immobilize three heavy metals (Pb, Cu, and Zn) 

accumulated in a plant (giant rat's tail grass) that grew naturally on heavy metal-polluted soil. 

Further, the structural (mechanical) effect of the PA as a component of fabricated geopolymer 

was studied. 

2. Materials and Methods 

2.1. Sampling and sample pretreatment. 

A Nigerian kaolin clay, called Ikere-kaolin clay, was obtained from a natural deposit in Ikere-

Ekiti, Ekiti State of Nigeria. The location lies at longitude 7º 2'N and latitude 5º 91'E. The raw 

kaolin clay sample was pretreated as reported by Ogundiran and Ikpeni [18]. Briefly, the raw 

natural clay was sun-dried and crushed with a rolling rod, followed by air-drying for one week 

and sieving to 212 µm using an Endicott Ltd, London, stainless steel sieve. The sieved clay 

was thermally treated in an electric furnace at 650º C for 6 hrs to convert it to the more reactive 

metakaolin used for geopolymer production. 
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A heavy metal-accumulating plant, giant rat's tail grass (Sporobolus pyramidalis) [56], 

was obtained at different distances and along three (3) directions: west, north, and north-east 

from a lead-smelting slag polluted site in Lalupon, Ibadan, Nigeria. Sporobolus pyramidalis 

can accumulate significant heavy metal levels, making it a potential phytoremediator [56]. The 

accumulator was gently but thoroughly washed with distilled water at the lab before air-drying 

for two weeks. Then, it was ashed in a muffle furnace at 650º C for 6 hrs before cooling to room 

temperature. The PA ash was stored in a desiccator for analysis and future use. 

2.2. Physical and chemical characterization.  

The thermal reactions of the kaolin clay to determine its dehydroxylation temperature were 

done using thermogravimetric analysis coupled with differential thermal analysis (TGA/DTA) 

(NETZCHDTA, 404 PC, Germany). This study focuses exclusively on acquiring the 

dehydroxylation temperature data for the kaolin clay. A constant temperature of 650º C was 

sustained for 6 hrs. to guarantee the thorough ashing of the phytoaccumulator [56]. Chemical 

characterization was done using an Energy Dispersive X-ray Fluorescence Spectrometer 

(EDX3600B) and Fourier Transform-Infrared (FT-IR) Spectroscopy (Perkin Elmer Inc – 

spectrum BX FTIR spectrometer, USA). 

2.3. Production and characterization of the geopolymer. 

A solution mixture 1:1 (w/w) of sodium silicate (Na2SiO3; chemical composition of 30.1% 

SiO2, 9.4% Na2O, and 60.5% H2O) and 8 M NaOH (Sigma Aldrich, 97.9%) was used as an 

alkaline activator. The alkaline activator was left for 24 hrs. at room temperature before use. 

The percentage proportion of CC to PA was 100%, 95%, 90%, and 85%. The initial mass of 

the 100% clay sample was 90 g. Consequently, all subsequent calculations were based on this 

reference point. The mix proportion and predetermined quantity of activator used for each 

percentage ratio are presented in Table 1. The higher the CC, the higher the activator that was 

enough to prepare the geopolymer. This observation is because clay, characterized by its plate-

like particle shape, requires high water demand during geopolymer formation [57‒59]. The CC 

and PA were dry mixed in a mixer for 3 min to homogenize. The alkali activator was added to 

the homogenized sample and mixed again for 20 min until a thixotropic paste was obtained. 

The pastes were cast into a cube mold (40 mm × 40 mm × 40 mm) and vibrated on a table for 

5 min to enhance compaction and remove entrapped air [60]. The setting time of the pastes was 

determined as the time elapsed between molding and the onset of hardening, i.e., when needle 

penetration was no longer possible [25]. The Vicat needle experiment ASTM C187/C191 [61] 

was conducted every 15 minutes after curing. Subsequently, the geopolymer paste was cured 

in a sealed plastic bag at ambient temperature to prevent the evaporation of mixing water and 

the carbonation of the surface [34, 62, 63]. After three (3) days, it was de-molded after three 

days for subsequent testing. In addition, an unstabilized (unactivated) counterpart of each CC-

PA geopolymer was prepared.  

The compressive strength of the geopolymers was assessed after curing for 7 and 28 days. 

Three separate geopolymer samples were tested using a compression test machine (ELE 

International, ADR Touch, 2000, UK). In each test, the maximum force needed to reach the 

fracture point was divided by the cross-sectional area of the geopolymers. The average of the 

two most proximate outcomes was computed and recorded as the compressive strength of the 

geopolymers [18]. 
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Table 1. Mix proportion used on a weight basis to produce geopolymers to prepare CC-PA geopolymers. 

S/N Sample ID (%) CC (g) PA (g) Activator (g) Activator/solid ratio 

1 

2 

3 

4 

100% 

95% 

90% 

85% 

90.0 

85.5 

81.0 

76.5 

0.00 

4.50 

9.00 

13.5 

74.0 

65.0 

63.0 

62.0 

0.82 

0.72 

0.70 

0.68 

 

2.4. Toxicity characteristics leaching procedure test (TCLP). 

The efficiency of heavy metal stabilization or immobilization is determined by the metal's 

strength and resistance to leaching [64]. Therefore, the leaching test is probably the most 

effective method to determine the heavy metal stabilization degree. Several leaching 

techniques have been utilized to gather information for environmental decision making [25]. 

However, The TCLP best determines the mobility of contaminants in solid, liquid, and multi-

phased wastes. It also simulates the worst-case scenario for waste disposal in landfills [65]. In 

a prior investigation conducted by [18], they replaced kaolin clay with waste materials in the 

range of 0-20%, and the TCLP was effectively employed to quantify the leachable heavy 

metals. Therefore, the TCLP method (USEPA Method 1311) was conducted in this work to 

ascertain the binding capacity of the CCPA-based geopolymer as an immobilizing material for 

Pb, Cu, and Zn [25, 36, 38] and to assess the environmental fitness of CC-PA geopolymers for 

potential uses. 

To ensure the sample's representativeness, the geopolymer samples were first crushed 

and thoroughly homogenized using the quaternary method. Subsequently, 2.0 g of material 

with particle sizes less than 9.5 mm was carefully selected from the homogenized sample and 

used for triplicate analysis. The extraction process was done using 40 mL of 0.1 M acetic acid 

solution (pH = 2.88 ± 0.05) in capped polyethylene centrifuge tubes. The acidic pH was 

preferred for the extraction because of the samples' highly alkaline nature (pH = 12.00 ± 0.05), 

which could precipitate the metal ions as hydroxides. However, the acidity of the unstabilized 

samples was about pH = 6.20 ± 0.02. Therefore, it was extracted with sodium/acetic acid 

solution (pH = 4.93 ± 0.05). In both instances, the extraction vessels were subjected to end-to-

end shaking at 30 rpm for 18 hrs. Subsequently, the mixture was filtered to eliminate any 

suspended solids. The resulting filtrates were acidified with HNO3 until the pH reached below 

2 before instrumental analysis to prevent the formation of precipitates. Finally, Flame Atomic 

Absorption Spectrometer (FAAS) (A-analyst 200, UK) quantified the leachable heavy metals 

in the samples.  

3. Results and Discussion 

3.1. Characterization of materials. 

The TGA/DTA result (Fig. 1) shows an endothermic peak within 450 – 650 ºC, indicating the 

simultaneous dehydroxylation of the kaolinite in the clay to form metakaolinite [34]. This 

endothermic peak also indicates the calcination temperature. Therefore, the clay was thermally 

treated in a muffle furnace at 650 ºC for 6 hrs. The IR spectra of raw clay and CC are presented 

in Fig. 2. The raw clay exhibits a sharp peak at 3686 cm-1, corresponding to the stretching 

vibrations of OH bonds attached to the Al octahedron sheet. The peak at 1633 cm-1 can be 

attributed to the bending vibration mode of physisorbed water on the surface of free silica 

produced due to Al removal [66]. The band associated with Si-O-Si stretching or Si-O-Al was 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bending-vibration
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seen at 1046 cm-1, whereas those associated with Si-O stretching and Al (vi)-O-Si bending 

vibrations were observed at 786, 758, and 685 cm-1. According to Ogundiran and Kumar [59], 

the band at 472 cm-1 is attributed to Si-O stretching vibrations in kaolinite. However, upon 

calcination, most of these kaolinite bands, such as the OH bands at 3686 cm⁻¹ and the 

physisorbed water vibration mode band at 1633 cm⁻¹, vanished [66]. Moreover, significant 

transformations occurred at lower wavenumbers below 1400 cm⁻¹, including the disappearance 

of the Al-O-Si bands at 758 and 783 cm⁻¹, indicating the conversion of kaolinite to the more 

reactive metakaolinite. The  XRD analysis from previous studies has confirmed that the 

metakaolinite product of the Ikere kaolin clay is amorphous [59], [34]. The band observed at 

3453 cm-1 has been ascribed to atmospheric water The band observed at 3453 cm-1 has been 

ascribed to atmospheric water [67].  

 

Figure 1. Differential thermal analysis (DTA) curve of raw Ikere-kaolin clay. 

Furthermore, the oxide composition (XRF) results of the CC and PA are shown in Table 

2. The CC consists mainly of SiO2 (53.1%) and Al2O3 (41.4%). These oxides are the building 

blocks of geopolymer formation [34], making the clay a potential candidate as a geopolymer 

precursor. Moreover, the composition of the oxides indicated that the raw clay is not a purely 

kaolinite-containing type but rather consists of trace amounts of other minerals. The PA 

consists mainly of SiO2 (46.6%) and CaO (13.8%). The high CaO content indicates a 

significant calcite amount [68]. PbO (1.30%), ZnO (0.28%), and CuO (0.04%) are also present 

in considerable quantity.  
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Table 2. Chemical composition (% wt.) of the CC and PA. 

Oxide CC PA 

Al2O3 41.4 6.77 

SiO2 53.1 46.6 

P2O5 0.19 1.61 

SO3 0.74 8.12 

K2O 0.11 10.5 

CaO 0.06 13.8 

TiO2 0.23 - 

Fe2O3 0.61 5.72 

NiO 0.06 0.05 

CuO - 0.04 

ZnO 0.11 0.28 

PbO 0.02 1.30 

WO3 0.04 0.26 

MoO3 0.23 0.36 

SnO2 1.53 1.84 

Sb2O3 1.43 1.66 

 

 
Figure 2. The FTIR spectra of Ikere-Ekiti raw clay (red line) and CC (black line). 

3.2. Characterization of the geopolymers. 

3.2.1. Setting time.  

The setting duration of metakaolin-based geopolymer is influenced by the choice of raw 

materials and the proportions used in the mixture [69]. In this work, the setting time of the 

geopolymers (Fig. 3) increased with PA quantity. This trend could be attributed to the fact that 

silicate species in the alkaline activator solution was the most reactive. However, in this study, 

as the amount of PA increases, the quantity of activator needed to produce the geopolymer 

decreases. As a result, the solution's reactivity diminishes due to the reduced activator content, 

leading to a slower dissolution of silicates and aluminates in both the CC and PA. 

Consequently, an extended setting time was observed with an increase in PA. Additionally, 

geopolymers' setting time could increase with increased SiO2/Al2O3 ratios [70] because a 

significant quantity of soluble silica within the alkaline solution boosts geopolymerization. 

Therefore, the reaction requires additional time to solidify and strengthen, resulting in an 

extended geopolymer setting period [71]. Thus, the elevated SiO2/Al2O3 ratio of the PA (6.8) 

(Table 2) could be responsible for the trend observed here, indicating a slow activation of the 
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geopolymer paste with increased PA content. It is worth mentioning that some research works 

linked this type of trend to the SiO2/Al2O3 ratio. For example, Silva et al. [70] explored the 

influence of the SiO2/Al2O3 ratio on the setting duration of metakaolin-based geopolymers. 

They observed that raising this ratio from 2.5 to 5.01 extended the geopolymer's setting time. 

In another work, Siyal et al. [71] discovered that augmenting the Si/Al ratio from 1.8 to 2.2 

increased the geopolymer's setting time. Such an occurrence could be advantageous because a 

retarded setting time allows for the complete dissolution of the material [25]. Hence, improved 

workability of the geopolymer paste for an extended period was achieved [72]. 

 
Figure 3. Setting time of CC-PA geopolymers. 

3.2.2. Compressive strength. 

The compressive strength of the geopolymers of various proportions of CC and PA at 7 and 28 

days is shown in Table 3. It was observed that the compressive strength of the geopolymer 

progressively increased with the curing duration. Moreover, a notable advancement in early 

strength was observed during the initial 7-day period for geopolymers incorporating PA. This 

result underscores the role of the high CaO content in the PA, facilitating the binder material 

reaction thereby spearheading early strength development [73]. It has been reported that 

calcium content significantly influences the properties of fresh mixture and final hardened 

products [74], [75]. Table 3 shows that geopolymers with PA gained more than 80% of their 

strength within seven days of curing. In their experiments, Wijaya et al. [76] reported a similar 

observation when they discovered that paste with a CaO content exceeding 20% achieves 54% 

of its 28-day strength in just three (3) days. Also, Seo et al. [77]  reported an early compressive 

strength when they incorporated CaO into a ternary blend Portland cement-slag-silica fume 

system, at room temperature.  

Table 3. Compressive strength (MPa) of CC- PA-based geopolymers at 7 and 28 days of curing. 

Curing days 100% 95% 90% 85% 

7 20.8 ± 0.3 18.0 ± 1.5 15.9 ± 5.2 9.46 ± 2.9 

28 38.0 ± 2.4 22.5 ± 0.2 19.0 ± 0.5 9.86 ± 0.9 

 

In this study, the 100% CC geopolymer showed the highest strength of 38.0 ± 0.2 MPa, 

similar to 35 N/mm2 reported by Elimbi et al. [78] for kaolin clays calcined at 650o C. 

Furthermore, among the fabricated geopolymers, the 95% geopolymer demonstrated the 

highest compressive strength of 22.5 ± 0.2 MPa after 28 days of curing, meeting the ASTM 
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(C62-17) [79] Specification Standard (20.7 MPa) for building bricks under severe weathering 

conditions. Conversely, the 90% geopolymer exhibited a compressive strength of 19.0 ± 0.5 

MPa, surpassing the required 17.2 MPa for moderate weathering [80]. This outcome suggests 

their suitability as a waste-based construction material under controlled conditions. However, 

compressive strength decreased with the increase in PA proportion. This trend can be attributed 

to the decreased amount of activator needed to produce geopolymers when there is an increase 

in PA. A similar observation was recently published [81]. The authors reported reduced 

geopolymer compressive strength with increased periwinkle shell ash. They linked this 

observation to the elevated calcium ions present in the periwinkle shell. Therefore, it is 

essential to note that while CaO content influences early strength development, an elevation in 

the CaO content could potentially decrease the strength of the geopolymers [82], [81]. Also, 

the substantial quantity of SiO2 in PA (Table 2) could be responsible for this observation. An 

elevated Si/Al ratio could diminish the ability of the geopolymeric gels, leading to the presence 

of some unreacted Si, which may be soft and act as a defect in the geopolymer binder [83], 

[84]. 

3.2.3. Toxicity Characteristic Leaching Procedure (TCLP). 

The TCLP results of the fabricated geopolymer and its unstabilized counterparts are presented 

in Table 4. The unstabilized counterpart is a mixture of the PA and CC (Table 1) without the 

activator. This test was conducted to investigate the effectiveness of the geopolymer network 

in binding the heavy metals in PA as an alternative way of managing phytoaccumulators and 

to assess the ash-containing geopolymers' environmental suitability. Cu and Pb were not 

detected in the CC sample without PA. The leachable Pb ranged from 0.09-0.32 and 0.28-1.75 

mg/l in the geopolymer and unstabilized counterparts, respectively. While Cu was not detected 

in the geopolymer leachates, indicating that its concentration remained below the 1.3 mg/l 

permissible limit recommended by USEPA for drinking water [5], [6], the Pb levels in all the 

leachates still exceeded the safe limit for Pb in wastewater set by WHO, which is 0.01 mg/l. 

However, the 95% CC’ leachate exhibited a Pb concentration of 0.09 ± 0.01, statistically equal 

to the limit (0.1 mg/l) set by WHO for agricultural soils [7]. The leachable Zn concentration 

ranged from 0.22 (100%) to 0.42 and 0.32-0.43 mg/l in the geopolymer and unstabilized 

counterparts, respectively. This result suggests that Zn was not effectively stabilized within the 

geopolymer network.  

Table 4. Leachable heavy metal concentrations (mg/L) in TCLP leachates of CC-PA geopolymers and their 

unstabilized counterparts. 

S/N 
Sample subjected to TCLP test 

Geopolymers  

Pb  Cu Zn %Pb %Cu %Zn 

Mean conc. in samples (mg/l) 
% reduction in conc.   

due to stabilization 

1 100% ND   ND 0.22 ± 0.01    

2 95%  

Unstabilized counterpart 

0.09 ± 0.01 

0.28 ± 0.02 

 ND 

0.03 ± 0.01 

0.32 ± 0.03 

0.41 ± 0.02 

68.0 100 21.9 

3 90% 

Unstabilized counterpart 

0.19 ± 0.01 

1.65 ± 0.15 

 ND 

0.03 ± 0.00 

0.34 ± 0.04 

0.43 ± 0.02 

94.5 100 20.9 

4 85% 

Unstabilized counterpart 

0.32 ± 0.00 

1.75 ± 0.08 

 ND 

0.03 ± 0.00 

0.42 ± 0.03 

0.43 ± 0.04 

81.7 100 2.33 

ND = Not Detected; Detection limits (mg/l) of the instrument for Cu = 0.0025, Pb = 0.018, Zn = 0.006. 
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Nevertheless, it was observed that immobilizing the leachable Pb, Cu, and Zn through 

stabilization lowered the concentration of the heavy metals in the geopolymers than in the 

unstabilized counterparts. All the CC-PA-based geopolymers showed higher binding capacities 

for Cu and Pb than Zn. With the unstabilized counterparts, the CC-PA-based geopolymer 

exhibited 100% and 86% binding capacities for Cu and Pb, respectively. Overall, up to 94.5% 

and 100% of Pb and Cu were respectively immobilized in the 90% geopolymer. These findings 

demonstrate the potential of CC geopolymer to successfully stabilize Cu and Pb within PA, 

effectively mitigating the leaching of these metals. 

4. Conclusion 

The Stabilization/immobilization of Pb, Cu, and Zn in PA using a CC-based geopolymer was 

studied. There was a direct correlation between the quantity of PA and the setting time of 

geopolymers, which can be linked to the notable Si/Al ratio within the PA. Moreover, the 

increased presence of CaO in the PA expedited the initial strength development of the 

geopolymer. There was a significant decrease in the concentration of Pb and Cu in 95% and 

90% geopolymers. Hence, the geopolymer network was effective in binding Pb and Cu. 

However, Zn was not adequately immobilized within the geopolymer network. The 

compressive strength of the CC-PA geopolymer decreased with increased PA proportion. 

However, 90% and 95% of the geopolymers satisfied the ASTM specification standard for 

building bricks under moderate and severe weathering conditions, respectively. Consequently, 

CC-based geopolymer can effectively immobilize Pb and Cu in PA while maintaining good 

mechanical properties. Additional research is necessary to determine the impact of PA on other 

geopolymer properties, including water absorption and dry density. Also, the prolonged setting 

time could be attributed to the increase in the SiO2/AlO3 ratio. However, it could not be 

ascertained in this current study. Along with other textural and physiological characterization, 

detailed XRD analysis of the PA in our future work would comprehensively confirm any 

attribution made in this respect.” Furthermore, a more profound comprehension of the 

geopolymerization reactions involving PA is imperative. 
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