Supplementary Materials

SM Figure 1. Location of the study area of the Ganges downstream.

SM Figure 2. SEM image and EDS of microplastics isolated from river water: Film (A, a); Fragment (B, b); Fiber (C, c), and Granule (D, d).

SM Figure 3. *CF* and *PLI* of water samples.

SM Table 1. Correlation among the physicochemical parameters.

	pН	EC	TSS	TDS	Turb.	TH	DO	BOD	COD	Ca ²⁺	Cl-	HCO ₃	NO ₃	PO4 ³⁻	SO ₄ ² -
pН	1														
EC	.226	1													
TSS	.673	.726	1												
TDS	.059	.965	.593	1											
Turb.	.908	061	.410	168	1										
TH	.049	.615	.055	.675	015	1									
DO	.884	.354	.859	.153	.718	169	1								
BOD	287	.719	.065	.763	495	.828	299	1							
COD	230	.767	.138	.797	451	.830	224	.996	1						
Ca^{2+}	.011	.667	.132	.633	236	.840	088	.919	.924	1					
Cl -	037	.316	128	.348	.072	.744	140	.528	.544	.512	1				
HCO ₃ -	446	.305	408	.419	457	.842	633	.850	.816	.777	.664	1			
NO_3	.765	.608	.934	.499	.524	.060	.817	026	.032	.093	286	425	1		
PO ₄ ³ -	.263	.486	.802	.432	.030	334	.560	116	072	208	560	577	.762	1	
SO ₄ ² -	.143	.979	.612	.951	113	.704	.259	.799	.844	.742	.484	.440	.457	.323	1

Bold numbers indicate a strong positive relationship

 $\textbf{SM Table 2.} \ \ \text{Water quality and pollution levels for water quality indices (WQI), (HPI), and (HEI).$

Water quality indices	Water quality	References
WQI	<50, excellent, 50 –100, good 100 –200 bad, and 200 –300 really bad water	[21]
НРІ	< 50 minimal pollutions, 50 -100 moderate pollution and > 100 high pollutions.	[23]
НЕІ	< 10 low pollutions 10-20 moderate pollution, and > 20 high pollutions.	[24]

SM Table 3. Comparison of microplastic concentrations in rivers of Bangladesh.

Name of river	Abundance (particles/L)	Characteristics of MPs	Abundant Polymer	Reference	
Buriganga River	4.33-43.6 items/L	fragment	PP, PE	[27]	
Karnafully River	0.57-6.63 particles/L	Blue, fiber, and <1mm	PE, PET	[28]	
Buriganga River	25 -117 particles/L	Blue, fiber, and <0.5mm	PET, PE, EVA	[29]	
Ganges River Basin to Meghna Estuary	50.9 particles/L 64.1 particles/L	Blue and red, Fiber and Fragments, <0.1 mm	PE	[26]	
Ganges downstream	14.3-17.7 particles/L	Blue, fiber, <1 mm	PE, PP, PET, PVC	Present study	