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ABSTRACT: This research developed an optimization model within a circular supply chain 

framework incorporating factors such as carbon emissions, social sustainability, and warehouse 

capacity limitations. The model adopted a modified Economic Order Quantity (EOQ) 

approach, with a comprehensive cost assessment that included production cost, 

remanufacturing cost, storage cost, disposal cost, and penalty cost for emissions, all formulated 

within a Mixed Integer Nonlinear Programming (MINLP) structure. To address the complex 

nonlinear problem, the metaheuristic Chinese Pangolin Optimizer (CPO) algorithm was 

applied, as it effectively balanced solution exploration and exploitation. The simulation results 

indicated the optimal combination of production lot size, remanufacturing, and the share of 

reusable goods, achieving the minimum total system cost. The sensitivity analysis showed the 

significant influence of production and remanufacturing costs, emissions, and the rate of 

product returns on system efficiency. Overall, this research demonstrated more credible, cost-

efficient, and sustainable inventory control approaches in a circular supply chain by 

considering warehouse constraints and applying the CPO. 

KEYWORDS: EOQ; manufacturing-remanufacturing; warehouse capacity; carbon 

emissions; Chinese Pangolin Optimizer; circular supply chain  

1. Introduction 

The circular supply chain (CSC) model became a significant focus in supporting economic and 

environmental sustainability, particularly in developing countries. The CSC aimed to reduce 

waste and extend product life cycles through recycling, repair, and remanufacturing practices 

[1], while promoting material efficiency and reducing carbon emissions [2]. The 

implementation of this model proved effective in enhancing operational resilience and 

industrial competitiveness, as demonstrated in case studies of the paint manufacturing supply 

chain in Peru [3] and waste management practices in India [4]. However, CSC implementation 

was not entirely free of challenges, and one of the key issues was the management of new, 

returned, and remanufactured goods simultaneously through the inventory system. Warehouse 

capacity limitation [5] was among the least discussed aspects in the literature, despite its direct 

implications for storage space efficiency, operational cost, and logistics flexibility [6, 7]. Most 
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EOQ and EPQ models applied in production–remanufacturing planning continued to assume 

unlimited warehouse capacity, which led to optimization outcomes that were less realistic for 

actual conditions [8].  

Although previous research addressed economic and environmental aspects such as 

production costs, carbon emissions, and cap-and-trade mechanisms [9‒11], most studies did 

not explicitly integrate warehouse capacity constraints into mathematical modeling. 

Furthermore, social dimensions such as ergonomic considerations and worker well-being were 

rarely included in quantitative circular supply chain models [12, 13]. This study proposed an 

EOQ-based optimization model that explicitly combined warehouse capacity constraints with 

economic, environmental, and social costs to bridge this gap. The model was formulated within 

the MINLP framework, considering product return dynamics, emission constraints, and policy 

incentives [14, 15]. In addition, the CPO algorithm, a recent metaheuristic inspired by the 

adaptive behavior of pangolins, was applied for its ability to balance exploration and 

exploitation in nonlinear search spaces [11]. This study aimed to minimize total system costs 

by determining optimal lot sizes for production and remanufacturing, as well as the appropriate 

proportion of reusable products, under warehouse capacity constraints and emission 

regulations. Overall, the study contributed to expanding circular inventory modeling by 

offering a realistic approach that holistically considered physical constraints alongside 

sustainability objectives. It was hypothesized that integrating warehouse capacity constraints 

would enhance the feasibility and cost efficiency of lot-sizing decision-making in CSC 

systems, and that the CPO would effectively solve nonlinear inventory models with 

optimization results that were competitive with conventional approaches. 

2. Methodology 

2.1. Assumptions of the mathematical model. 

The proposed model was developed based on several assumptions. Queries were deterministic 

and constant with a positive rate, and the return rate was assumed to be less than one hundred 

percent. Manufactured, remanufactured, and transmittable items were all available in stock, 

and additional items could be produced or reproduced at any time to increase the stock of 

returned and finished items. Goods were treated as unique, and the manufacturing or 

reproduction process did not consider more than one product type. When stock ran out, a new 

lot could be produced and shipped immediately, and the time required for production or 

reproduction was considered negligible. No stock-out problem was assumed. The cost per unit 

of product produced, remanufactured, or scrapped was considered independent of quantity. All 

expenditures and emissions, except for the disposal-related parameter, were assumed to be non-

negative [16]. Harmful emissions could occur in discarded goods by applying carbon capture 

and waste-to-energy generation technologies. The social cost of the setup process was not 

negligible but was included in the model through the ongoing social cost component associated 

with manufacturing setup and remanufacturing activities. However, social costs related to the 

product disposal process were considered negligible and were not included in the model 

calculations. 

 

 



Industrial and Domestic Waste Management 5(2), 2025, 97–109 

99 
 

2.2. Model parameters and variables.  

The model parameters and variables considered various influences, and social and 

environmental costs were incorporated into the economic lot model. This section describes the 

assumptions applied in the model to assign values to social and environmental impacts. Table 

1 presents the variables and parameters used for the model formulation. 

Table 1. Model parameters and variables. 

Economic parameters 

𝜆: Demand (unit/time) 

𝐶𝑑: Disposal cost ($/unit) 

𝐶𝑚: Production cost ($/unit) 

𝐶𝑟: Remanufacturing cost ($/unit) 

ℎ𝑚: Variable cost of holding production stock ($/unit/time) 

ℎ𝑛: Variable cost of holding recoverable stock ($/unit/time) 

ℎ𝑟: Variable cost of holding remanufactured stock ($/unit/time) 

𝐾𝑚: Manufacturing setup cost ($) 

𝐾𝑟: Remanufacturing setup cost ($) 

𝑟: Rate of return (%) 

𝑐𝑎𝑝𝑚: Production lot warehouse capacity 

𝑐𝑎𝑝𝑟: Warehouse capacity of remanufacturing lot 

Environmental and social parameters 

𝛼: Emission quota (kgCO2eq) 
 

𝐶: Emission cost ($/kgCO2eq) 

𝜎: Break fee  

𝑠𝑚: Fixed costs associated with continued labor use in manufacturing 

𝑠𝑟: Fixed costs associated with continued use of labor in remanufacturing 

𝑠𝑜𝑟: Variable costs associated with the continued use of labor in remanufacturing 

𝑔𝑜𝑚: Fixed emissions from produced stock (kgCO2eq/unit/time) 

𝑔𝑜𝑛: Fixed emissions from recoverable stock (kgCO2eq/unit/time) 

𝑔𝑜𝑟: Fixed emissions from remanufactured stock (kgCO2eq/unit/time) 

𝑋: Emissions of carbon credits to be bought or sold (kgCO2eq/time) 

Variables 

𝑄𝑚: Production lot size (unit) 

𝑄𝑟: Reproduction lot size (unit) 
 

𝜇:: Proportion of recoverable goods or remanufacturing tax (%) 

2.3. Math model. 

The model in this study aimed to minimize the total cost of the manufacturing and 

remanufacturing system within a circular supply chain scenario. The system involved the 

production of new products, the remanufacturing of returned products, warehousing, and the 

disposal of non-recyclable products. It integrated three elements of sustainability: economic, 

environmental, and social. Total expenses were calculated as a function of the aggregate fixed 

and variable production, setup, storage, and disposal costs. Environmental elements were 

reflected in carbon emissions (kgCO₂eq) generated by ordering, storage, production, and 

remanufacturing activities. These emissions were regulated under a cap-and-trade system, with 

additional expenses or benefits determined by the difference between actual emissions and the 
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allocated quota. The social dimension was represented by the cost of unemployment associated 

with labor during production setup and remanufacturing, following the approach of Battini et 

al. [17]. 

The model also considered the proportion of demand that could be met through 

remanufacturing and the storage limits for both new and remanufactured products. Returned 

products were classified as either remanufacturable or non-remanufacturable, with the latter 

incurring disposal costs. System-wide costs depended on the direction of product flow and 

economic, environmental, and social influences. The mathematical model used in the 

numerical analysis was developed to calculate the total cost of the entire system, including 

production, remanufacturing, storage, and disposal of non-reprocessable products. The 

resulting total cost was derived from manufactured, remanufactured, recoverable, or disposed 

products, depending on the direction of product flow. Costs in this model were categorized as 

fixed or variable, according to the number of items processed. The process flow of the 

manufacturing and remanufacturing system is illustrated in Figure 1. The diagram depicted the 

relationships between procurement, storage, distribution to end users, and product returns for 

inspection and repair. This flow formed a closed cycle that supported product reuse, reduced 

waste, and lowered carbon emissions. 

 
Figure 1. Manufacturing-remanufacturing system process flows in a circular supply chain. 

 

The system's total cost (TC) was formulated using a Mixed Integer Nonlinear 

Programming model, as presented in Equation (1). 
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The objective of the mathematical model was to minimize the total cost in a supply chain 

system involving manufacturing and remanufacturing while incorporating social and 

environmental aspects. Equation (1) represented the total cost function per cycle, which 

consisted of various cost components related to production activities, remanufacturing 

processes, inventory management, and emissions. In this model, the variable X was not 

explicitly formulated as a decision variable but was implicitly obtained as the difference 

between the total fixed emissions from manufacturing and remanufacturing activities 𝑔𝑜𝑚 +

 𝑔𝑜𝑛 + 𝑔𝑜𝑟 and the allocated emissions quota α. This difference was then multiplied by the 
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carbon price per unit emission 𝐶 and included as either a penalty or an incentive in the total 

system cost. With this formulation, the model conceptually reflected the cap-and-trade 

principle, although the value of 𝑋 was not directly optimized as an independent variable. 

To ensure that the solution generated by the objective function remained within 

operational and policy boundaries, the model was constrained by several functions. These 

constraints represented the technical and structural limitations of the system, such as demand 

fulfillment and warehouse capacity restrictions. The formulation of the constraint functions is 

presented in the following section: 

 

Constraint 

𝑄𝑚, 𝑄𝑟 <  𝜆                     (2) 

𝑄𝑚, 𝑄𝑟 >  0                     (3) 

𝑄𝑚  ≤  𝑐𝑎𝑝𝑚                     (4) 

𝑄𝑟  ≤  𝑐𝑎𝑝𝑟                     (5) 

0 ≤ 𝜇 ≤ 1                     (6) 

The mathematical model proposed in this scientific article is to minimize the total cost 

(TC), so that Equation (2) limits the amount of production of new goods (𝑄𝑚) and 

remanufactured products (𝑄𝑟) so as not to exceed the total demand (𝜆), this is done to avoid 

overproduction so as not to increase costs. Furthermore, Equation (3) ensures that both 

variables are positive to ensure validity and operational feasibility in the system. In addition to 

that, storage capacity is also a critical problem in this model. Equations (4) and (5) limit the 

number of productions lots based on the warehouse's maximum capacity, 𝑐𝑎𝑝𝑚 for 

new products and 𝑐𝑎𝑝𝑟 for remanufactured products, respectively. Finally, Equation (6) 

imposes a constraint on the variable 𝜇, i.e., the proportion of demand 

fulfilled by remanufacturing, which is limited to the range (0,1) or according to the 

maximum allowed value in the system. 

2.4. CPO algorithm implementation.  

To address complex nonlinear inventory optimization problems in circular manufacturing and 

remanufacturing systems, this study applied the CPO, a metaheuristic algorithm inspired by 

the natural behavior of pangolins in searching for food. The algorithm mimicked pangolins' 

scent detection, digging, and adaptive movement strategies to balance global exploration and 

local exploitation, thereby avoiding premature convergence and expanding the scope of the 

solution search. The optimization process began with the initialization of a population of search 

agents, or virtual pangolins, which were randomly distributed within the solution space, where 

each agent position represented a candidate solution vector evaluated through the objective 

function consisting of total system costs, including production costs, remanufacturing costs, 

carbon emissions, and social factors. In each iteration, agent behavior was governed by several 

mechanisms: scent-based navigation guided by scent concentration, wind dispersion, and 

olfactory direction; energy and fatigue management, in which energy levels decreased 

gradually to encourage broad exploration in the early stages and intensive local exploitation in 

later stages; and Levy random steps with position disturbances, which enhanced solution 
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diversity and prevented entrapment in local optima. Depending on the strength of scent signals 

and stochastic influences, agents displayed adaptive behavioral phases such as luring behavior 

when a scent was detected, search and localization under weak scent conditions, quick 

approach when scent was moderate, and digging and predation when scent was strong. During 

the search process, agent positions were continuously updated based on scent information and 

their distance to the current best solution, which was dynamically stored and refined until the 

maximum iteration limit was reached. At the conclusion of the optimization process, the 

algorithm produced the optimal solution in terms of production lot size, remanufacturing lot 

size, and the proportion of returned items that could be reused. For clarity, the pseudocode of 

the CPO is presented in Algorithm 1, which summarizes the computational steps and position 

update rules based on the relevant control parameters. 

Algorithm 1 

Pseudocode Chinese Pangolin Optimizer 

Initialize a population of N search agents with random positions in the search space. 

Inputs: The population size 𝑛, maximum number of iterations 𝑇, and variable dimension 𝑑 

Outputs: The location of the Chinese pangolin 𝑋𝑏𝑒𝑠𝑡  and its fitness value 

Initialize the random population 𝑋𝑖  (𝑖 =  1,2, … , 𝑛)   

while 𝑡 < 𝑇  do 

    Calculate the fitness values of the Chinese pangolin 

    Update the aroma concentration 𝐶𝑀   
    Update the rapid decrease factor 𝐶1   
    Update the aroma trajectory factor a  

    Update the levy's flight step length 𝐿𝑙𝑒𝑣𝑦   

    𝑋𝑀   = best position (Chinese pangolin) 

    𝑋𝐴   = second best position (Ant) 

    for (each Chinese pangolin position (𝑋𝑖 )) do 

        Update the energy fluctuation factor 𝐴𝑖   

        Update the energy consumption factor 𝐸  

        Update the fatigue index Fatigue  

        Update the Generate random 𝑟1  

        /*Luring Behavior*/ 

        if (𝐶𝑚  ≥ 0.2 && 𝑟1  ≤ 0.5) then 

            Update the location vector //Attraction and Capture Stage 

            Update the location vector //Movement and Feeding Stage 

            Update the best position 𝑋∗ 

        /*Predation Behavior*/ 

        else if (𝐶𝑚 ≤ 0.7 || 𝑟1  > 0.5) then 

            if (0 ≤ 𝐶𝑀  < 0.3) then 

                Update the location vector using) //Search and Localization Stage 

                Update best position X*  

            Else if (0.3 ≤  𝐶𝑀  < 0.6): 

                Update location vector //Rapid Approach Stage 

                update best position 𝑋∗ 

            else if (𝐶𝑀  ≥ 0.6) then 

                Update the location vector using //Digging and Feeding Stage 

                update best position 𝑋∗ 

    end if 

  end if 

end for 

    𝑡 = 𝑡 + 1 

return the best position 𝑋∗and its fitness value 

This study implemented the CPO to determine the optimal combination of decision 

variables to minimize the total system cost. The algorithm parameters were carefully 

configured, with 750 search agents, a maximum of 1000 iterations, and a three-dimensional 
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search space defined by the manufacturing lot size (𝑄𝑚), remanufacturing lot size (𝑄𝑟), and the 

proportion of products eligible for reprocessing (μ). To illustrate the optimization process, 

pseudocode was developed to conceptually represent the main steps of the algorithm without 

being tied to the syntax of a specific programming language, thereby facilitating a clearer 

understanding of its working mechanism. This pseudocode was adapted from the original 

MATLAB implementation to suit the structure of optimization problems in the proposed 

model. Through this approach, the CPO was expected to provide more efficient and effective 

solutions for manufacturing–remanufacturing model optimization and to make a meaningful 

contribution to the advancement of optimization methods in this field. 

2.5. Numerical data.  

Numerical values used to solve and simulate the developed mathematical model are presented 

in this section. These values fall into three general categories of parameters: economic, 

environmental, and social. Optimization and simulation were performed based on the values 

listed in Table 2, ensuring realistic and industrially applicable results for the case under study. 

MATLAB software was employed to implement the CPO algorithm to solve the optimization 

of the proposed complex model. CPO was selected for its ability to explore a wide solution 

space and avoid premature convergence, thereby achieving more efficient and effective optimal 

solutions. The algorithm was used to determine optimal values of key decision variables, 

namely manufacturing lot size (𝑄𝑚), remanufacturing lot size (𝑄𝑟), and the remanufacturing 

rate (μ). These values minimize the total cost within a circular supply chain while considering 

carbon emissions, warehouse capacity constraints, and social aspects. 

Table 2. Parameter values. 
Economic Parameters Environmental parameters Social parameters 

𝜆:100 𝛼:  300 𝜎: 2 

𝐶𝑑: -10 𝐶: 1 𝑠𝑚: -0,1 

𝐶𝑚: 62 𝑔𝑜𝑚: 0 𝑠𝑟: -0,245 

𝐶𝑟: 50 𝑔𝑜𝑛: 0 𝑠𝑜𝑟: 0,153 

ℎ𝑚: 10 𝑔𝑜𝑟: 0 𝜎: 2 

ℎ𝑛: 5   

ℎ𝑟: 9   

𝐾𝑚:100   

𝐾𝑟: 100   

𝑟: 0,8   

To reflect the physical constraints of the real system, the model imposes an upper limit 

on warehouse storage capacity. Specifically, the production lot size (𝑄𝑚) is restricted to a 

maximum of 100 units, while the remanufacturing lot size (𝑄𝑟) is capped at 110 units. These 

limits ensure that production decisions do not result in overstocks that exceed available 

warehouse capacity. To solve this optimization problem and determine the set of variables that 

minimize the total system cost, the CPO metaheuristic algorithm is employed. Inspired by the 

prey-hunting behavior of Chinese pangolins, CPO was developed to solve large-scale nonlinear 

optimization problems by effectively balancing exploration and exploitation in the solution 

space. In this study, the objective function is based on the previously formulated mathematical 

model with four key decision variables: production lot size (𝑄𝑚), remanufacturing lot size (𝑄𝑟), 

and the proportion of remanufactured products (μ). The optimization process yields optimal 

parameters that balance economic, environmental, and operational constraints while 

minimizing the total system cost. These findings can support companies in adopting more 
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sustainable, ethical, and worker-oriented policies, enhancing corporate image and employee 

loyalty. 

In addition, sensitivity analysis was conducted on several critical parameters that could 

influence the total cost and decision variables. This analysis examines how variations in these 

parameters affect the optimization outcomes and provides insights into the robustness of the 

proposed model. Six parameters were tested under different data scenarios: demand, 

manufacturing cost, remanufacturing cost, emission cost, rate of return, and warehouse 

capacity. Demand (λ) was varied to evaluate how fluctuations impact optimization decisions 

and total costs. Manufacturing cost (𝐶𝑚) was analyzed to assess its influence on the optimal 

solution; while remanufacturing cost (𝐶𝑟) was tested to determine its effect on total costs and 

operational strategies. Similarly, changes in emission cost (C) were examined to evaluate their 

implications for decision-making and cost outcomes. The rate of return (r) of used products 

was varied to identify its impact on total cost and system efficiency. Finally, the influence of 

warehouse capacity, represented by 𝑄𝑚and 𝑄𝑟, was analyzed to determine its effect on total 

system cost and the feasibility of inventory management strategies. 

3. Results and Discussion 

3.1. Results. 

This study develops an EOQ optimization model for a remanufacturing–manufacturing system 

within a circular supply chain framework, incorporating warehouse capacity constraints, 

carbon footprint considerations, and social dimensions. The proposed model is designed to 

achieve an optimal balance between operational costs and sustainability requirements. The 

optimization results demonstrate efficient lot sizes for production and remanufacturing while 

minimizing overall system costs. A summary of the optimization outcomes is presented in 

Table 3. 

Table 3. Model optimization results. 

Parameter Nilai Optimal 

Production lot size (𝑄𝑚) 100 unit 

Reproduction lot size (𝑄𝑟) 37,1 unit 

Total cost (𝑇𝐶) Rp4.053,45 

Fixed costs associated with continued labor use in manufacturing (𝑆𝑚) –0,1 

Fixed costs associated with continued use of labor in remanufacturing (𝑆𝑟) –0,245 

Disposal Cost (𝐶𝑑) –10 

In addition to being cost-effective, the model demonstrates that certain components with 

negative values can, in fact, contribute positively to the overall system. This outcome reflects 

the influence of external incentives or long-term benefits driven by existing social and 

environmental policies. For example, waste disposal mechanisms that possess economic value 

while reducing social costs highlight the beneficial role of improved worker well-being [17], 

[18]. By integrating economic, environmental, and social dimensions, this approach offers a 

more comprehensive and realistic framework for decision-making in inventory management, 

which is particularly relevant in circular supply chains where efficiency must be achieved 

without compromising sustainability [8, 19]. The sensitivity analysis conducted on critical 

parameters such as demand, production cost, remanufacturing cost, carbon emission cost, 

product return rate, and storage capacity further reinforces the robustness of the model. Results 
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reveal that even minor changes in some of these parameters can significantly influence 

optimization outcomes, especially regarding total system costs and determining optimal lot 

sizes. Compared to previous research, the present study is notable for explicitly incorporating 

social considerations into the modeling process. While prior works by Govindan et al. [8] and 

Ghasemi et al. [20] addressed economic and environmental metrics without accounting for 

social dimensions, this study extends the scope by including ergonomics and worker well-being 

as cost factors. Additionally, the model provides a pragmatic solution by accounting for storage 

capacity dynamics and product return flows, consistent with the findings of Utama et al. [21] 

and Jauhari et al. [22]. Integrating a cap-and-trade scheme for carbon emissions further adds 

flexibility and aligns with contemporary environmental policymaking. Overall, the results 

indicate that adopting an integrated, multidimensional EOQ approach enhances operational 

performance and supports sustainability objectives within modern circular supply chain 

systems. 

4.2.Sensitivity analysis. 

The sensitivity analysis aims to examine the robustness of the model against variations in 

several critical parameters, including rate of return, emission cost, remanufacturing cost, and 

demand. This analysis enhances the understanding of how changes in these parameters 

influence the optimal decision variables (𝑄𝑚, 𝑄𝑟, and  μ𝑜𝑝𝑡) as well as the total system cost. 

The sensitivity analysis of demand, production cost, remanufacturing cost, emission cost, 

return rate, and warehouse capacity constraints, as presented in Table 4, provides an overview 

of how these parameters influence the total cost (TC). Demand plays a critical role, as an 

increase raises production quantities and intensifies operational activities. Higher demand 

forces firms to expand production capacity, elevating costs due to greater resource and labor 

requirements. Understanding this dynamic is essential for firms to design strategies that 

effectively manage fluctuating demand. Production and remanufacturing costs are also 

significant determinants of TC. An increase in production cost makes each additional unit more 

expensive, reducing profit margins, while a higher remanufacturing cost diminishes the 

economic advantage of remanufacturing as a cost-saving alternative. To remain competitive, 

firms must continuously improve production and remanufacturing efficiency to lower these 

costs. 

Emission costs, which directly reflect the environmental impact of production processes, 

further contribute to rising TC. Companies are compelled to adopt sustainable practices in an 

era of increasing environmental awareness and regulatory pressure. Investing in green 

technologies and emission-reduction strategies can mitigate these costs while enhancing 

corporate reputation. By contrast, an increase in the return rate (%) reduces TC significantly. 

Returned products can be remanufactured at a lower cost than new units, reducing overall 

expenses and lowering waste and environmental impact. Firms should prioritize strategies to 

maximize product returns, such as customer incentive programs.  

Finally, warehouse capacity constraints also affect TC, though their impact is 

comparatively smaller. Expanding warehouse capacity enhances production and storage 

efficiency, reducing the need for repeated operations and stabilizing overall costs. Thus, 

warehouse infrastructure investment is an important long-term strategy to support operational 

growth and sustainability. 
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Table 4. Sensitivity analysis results. 

Parameters Parameter Change Total Cost 𝑸𝒎 𝑸𝒓 𝝁 opt 

Demand 

-50%  $ 875,10  100 26,37 0,9 

-25%  $ 2.470,28  100 33,44 0,9 

-10%  $ 3.853,82  100 32,25 0,9 

10%  $ 5.219,81  100 39,49 0,9 

20%  $ 5.629,04  100 42,19 0,9 

50%  $ 7.199,37  100 45,52 0,9 

Production Costs (𝐶𝑚 ) 

-50%  $ 3.723,55  43,81 43,33 0,1 

-25%  $ 3.898,39  100 37,69 0,9 

-10%  $ 3.991,39  100 37,54 0,9 

10%  $ 4.115,40  100 37,99 0,9 

20%  $ 4.208,39  100 37,64 0,9 

50%  $ 4.363,39  100 37,94 0,9 

Remanufacturing Cost (𝐶𝑟 ) 

-50%  $ 1.803,47  100 38,42 0,9 

-25%  $ 2.928,39  100 37,61 0,9 

-10%  $ 3.603,39  100 37,74 0,9 

10%  $ 4.503,43  100 38,22 0,9 

20%  $ 5.178,39  100 37,84 0,9 

50%  $ 6.303,39  100 37,76 0,9 

Emission Cost 𝐶 

-50%  $ 3.793,39  100 37,68 0,9 

-25%  $ 3.923,40  100 37,38 0,9 

-10%  $ 4.001,39  100 37,71 0,9 

10%  $ 4.105,39  100 37,79 0,9 

20%  $ 4.157,39  100 37,35 0,9 

50%  $ 4.313,39  100 37,7 0,9 

Rate of Return (%) 𝑟 

-50%  $ 4.453,42  100 38,18 0,9 

-25%  $ 4.253,41  100 37,36 0,9 

-10%  $ 4.133,39  100 37,76 0,9 

10%  $ 3.973,39  100 37,69 0,9 

20%  $ 3.853,39  100 37,64 0,9 

50%  $ 3.653,50  100 38,55 0,9  

Warehouse Capacity (𝑄𝑚 

and 𝑄𝑟) 

-25%  $ 4.650,84  74,89 57,16 0,9 

-50%  $ 5.174,42  49,97 46,46 0,9 

-75%  $ 5.774,08  25 25 0,9 

25%  $ 4.053,47  100 38,41 0,9 

50%  $ 4.053,43  100 38,22 0,9 

75%  $ 4.053,40  100 37,93 0,9 

5. Result Implications 

This research significantly contributes to four key areas: managerial, environmental, social, 

and theoretical implications. From a managerial perspective, the developed model enables 

companies to determine the optimal lot sizes for new production (𝑄𝑚) and remanufacturing 

(𝑄𝑟), as well as the proportion of recoverable products (μ), to minimize total operating costs. 

Given the model's sensitivity to product recovery rates, managers should pay greater attention 

to improving the efficiency of remanufacturing processes and reverse logistics. Moreover, the 

potential savings from negative disposal costs and negative fixed labor costs highlight that 

effective waste management strategies and enhanced employee welfare generate positive social 

outcomes and yield financial benefits. Thus, the model helps companies control costs while 

encouraging a holistic approach to sustainability. 
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From an environmental perspective, the model supports reductions in carbon footprints 

and dependency on virgin raw materials by increasing remanufacturing utilization. The 

optimization results demonstrate that companies can achieve environmental sustainability 

targets without compromising profitability, proving that operational efficiency and 

environmental responsibility can be mutually reinforced. Socially, integrating sustainable 

employment aspects into the model provides valuable insights, showing that improved worker 

welfare such as reduced risk of injury and sufficient rest time contributes to long-term 

efficiency. These findings suggest that adopting ethical and worker-friendly practices 

strengthens corporate reputation and fosters greater employee loyalty. 

Finally, from a theoretical standpoint, this research advances the EOQ and closed-loop 

supply chain literature by developing a model that simultaneously integrates economic, 

environmental, and social dimensions while explicitly accounting for warehouse capacity 

constraints. Applying the CPO algorithm effectively solves complex optimization problems 

and opens new avenues for exploration. The framework presented here can be extended in 

future studies to address uncertain demand, multi-product systems, or specific industrial 

contexts characterized by more complex circular logistics structures. 

6. Conclusion 

This research develops a manufacturing–remanufacturing optimization model for circular 

supply chain systems by integrating carbon emissions, warehouse capacity, and sustainable 

social factors. The model minimizes overall logistics and operational costs while ensuring 

emission limits and employee welfare compliance. It employs an EOQ-based approach 

combined with the CPO algorithm to achieve optimal results. The simulation results 

demonstrate that under realistic economic, environmental, and social parameters, considering 

warehouse capacity constraints enhances total cost (TC) efficiency through optimal production 

and remanufacturing strategies. Sensitivity analysis reveals that demand, production, 

remanufacturing, and emission costs are the four most influential parameters affecting TC. 

Increases in these parameters lead to significant cost escalation: higher demand raises 

production frequency; higher production costs increase the expense of producing new units; 

and higher remanufacturing costs erode the cost advantages of remanufacturing. Thus, 

increases in either production or remanufacturing costs directly elevate TC. In contrast, the 

return rate of used products plays a crucial role in reducing TC, as returned items can be 

remanufactured at lower costs than producing new goods. Similarly, increasing warehouse 

capacity contributes to cost reduction, albeit less significantly. Larger capacity improves 

production flexibility, reduces repetitive operations, and allows higher production volumes, 

stabilizing TC. Despite its contributions, this study has several limitations. The model assumes 

deterministic values for demand, costs, and return rates, which may not fully capture real-world 

uncertainty. Furthermore, it focuses on a single-product system, limiting its applicability to 

more complex multi-product supply chains. While warehouse capacity is considered, it is 

treated as a static constraint without accounting for flexible or multiple warehouse 

configurations. Additionally, although the model integrates ergonomics and carbon emissions, 

future research could expand on these aspects by incorporating more granular factors and 

diverse environmental policy scenarios. 
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