
 

1 

 

Research Article 

Volume 5(1), 2025, 1‒11 

https://doi.org/10.53623/idwm.v5i1.580  

Plastic Waste Detection Using Deep Learning: 

Insights from the WaDaBa Dataset 

Suman Kunwar1*, Banji Raphael Owabumoye2, Abayomi Simeon Alade3 

1Faculty of Computer Science, Selinus University of Sciences and Literature, Ragusa, Italy 
2Department of Geography, Obafemi Awolowo University, Ile-Ife, Nigeria 
3Department of Physics, University of Ibadan, Oyo, Nigeria 

*Correspondence: sumn2u@gmail.com   

SUBMITTED: 6 January 2025; REVISED: 19 February 2025; ACCEPTED: 24 February 2025  

ABSTRACT: With the increasing use of plastic, the challenges associated with managing 
plastic waste have become more difficult, emphasizing the need for effective classification and 
recycling solutions. This study explored the potential of deep learning, focusing on 
convolutional neural networks (CNNs) and object detection models like YOLO to tackle this 
issue using the WaDaBa dataset. The results indicated that YOLO-11m achieved the highest 
accuracy (98.03%) and mAP50 (0.990), while YOLO-11n performed similarly but achieved 
the highest mAP50 (0.992). Lightweight models like YOLO-10n trained faster but had lower 
accuracy, whereas MobileNetV2 demonstrated impressive performance (97.12% accuracy) but 
fell short in object detection. YOLO-11n had the fastest inference time (0.2720s), making it 
ideal for real-time detection, while YOLO-10m was the slowest (5.9416s). Among CNNs, 
ResNet50 had the best inference time (1.3260s), whereas MobileNetV2 was the slowest 
(1.4991s). These findings suggested that by balancing accuracy and computational efficiency, 
these models could contribute to scalable waste management solutions. The study 
recommended increasing the dataset size for better generalization, enhancing augmentation 
techniques, and developing real-time solutions. 
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1. Introduction 

Plastics have become indispensable in modern society due to their versatility, durability, and 
low cost. As a result, global plastic production has skyrocketed to over 450 million tons 
annually [1]. However, the very properties that make plastics so useful—durability and 
resilience—also contribute to their persistence in the environment, where they can take 
hundreds of years to degrade. The United Nations Environment Programme estimated that 
more than 8 million tons of plastic waste enter the oceans annually [2], leading to catastrophic 
effects on marine life and ecosystems. The most effective strategies to address the global issue 
of plastic pollution remain uncertain. Borrelle et al. and Lau et al. explored potential solutions 
and their implications, concluding that substantial reductions in plastic waste generation are 
achievable over the next few decades if immediate and robust action is taken [3, 4]. However, 
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even under the best circumstances, substantial amounts of plastic are still expected to 
accumulate in the environment.  

Plastic waste management has been a focus of recent research, especially given the 
limitations of traditional sorting techniques. Studies showed that less than 9% of plastic 
produced globally is recycled, underscoring inefficiencies in existing waste management 
frameworks [5, 6]. Traditional waste management systems, reliant on manual sorting, have not 
been efficient enough to handle the growing volume of plastic waste. To address this issue, the 
Society of the Plastics Industry introduced Resin Identification Codes (RICs) in 1988. These 
codes categorized plastics based on polymer content, facilitating recycling and waste 
management. Common RICs include PET, PE-HD, PVC, PE-LD, PP, and PS, which are often 
labeled on plastic products to aid in sorting. Artificial intelligence (AI) and machine learning 
(ML) have emerged as transformative technologies in automating waste management and have 
introduced various techniques to effectively manage waste [7, 8, 9]. The use of deep learning 
models such as YOLO (You Only Look Once) has shown significant promise in improving 
waste classification accuracy, as its ability to detect objects in real-time with high accuracy 
makes it ideal for waste sorting applications [10, 11]. 

The study by Redmon and Farhadi showed that the architecture of YOLO allows for 
simultaneous object detection and classification, making it faster than traditional CNN-based 
approaches [12]. One study found that the larger YOLO-v5 model outperformed the smaller 
nano- and medium-sized models in detecting plastic waste along railway lines [13]. The latest 
version, YOLO-11n, incorporates advanced modules to enhance detection capabilities, 
particularly for small objects, making it highly effective for waste classification. Furthermore, 
transfer learning models like MobileNetV2 and ResNet have demonstrated efficiency in 
recognizing complex waste categories, making them suitable for deployment in resource-
constrained environments [14, 15]. Studies have shown that models pre-trained on large 
datasets like ImageNet can significantly improve performance in specialized tasks such as 
waste detection [16]. These advancements signal a shift towards AI-driven solutions that hold 
the potential to make plastic waste classification and recycling much more effective. The aim 
of this study was to evaluate the effectiveness of YOLO models in identifying plastic waste 
using the WaDaBa dataset and compare them with MobileNetV2, ResNet-50, and EfficientNet, 
along with a custom model in various settings. We also implemented various data augmentation 
techniques to improve dataset diversity and model generalization, as these can enhance 
accuracy. Finally, the most effective model was embedded in a mobile application. 

2. Materials and Methods 

This study employed a comprehensive methodology encompassing data preparation, model 
development and training, and performance evaluation. The models included YOLO variants, 
a custom deep learning model, and pre-trained transfer learning models—MobileNetV2, 
ResNet50, and EfficientNet. Each model underwent specific preprocessing and data 
augmentation techniques to enhance classification accuracy. 

2.1. Dataset and preprocessing. 

The WaDaBa dataset consists of 4,000 high-resolution RGB images (1920×1277 pixels, 300 
dpi) representing five distinct RIC categories: PET, PE-HD, PP, PS, and Others. It has become 
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a benchmark for evaluating deep learning models, as traditional methods struggle to generalize 
across different plastic types. The images were captured under varying lighting conditions and 
angles, with key attributes—such as plastic type, color, and deformation level—embedded in 
the filenames. However, the dataset exhibits a significant class imbalance, with PET 
comprising 55% of the total images, while the "Others" category accounts for only 1%, as 
shown in Figure 1. 

 

Figure 1. Distribution of the dataset. 

To address this imbalance, data oversampling was applied to expand the dataset to 11,000 
images. Additionally, data augmentation techniques—including random zoom, rotation, 
contrast adjustment, and flipping—were implemented to enhance model robustness and 
generalization across different conditions. The images were annotated using Annotate-Lab, 
converted into YOLO format, and split into training and testing sets at an 80:20 ratio. Figure 2 
illustrates the annotation of an image using Annotate-Lab [17]. 

 

Figure 2. Annotation of WaBaDa image using annotate-lab. 
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2.2. Model architecture and training. 

2.2.1. YOLO model training. 

The YOLO models—YOLO-10n, YOLO-10m, YOLO-11n, and YOLO-11m—were selected 
for this study due to their exceptional real-time detection capabilities, making them highly 
suitable for efficient waste classification. Each model was configured to achieve an optimal 
balance between precision, recall, and mean Average Precision (mAP) for accurate plastic 
waste identification. Training was conducted over 20 epochs, utilizing non-max suppression 
techniques to eliminate overlapping bounding boxes and enhance detection confidence [18]. 
This approach improved precision while significantly reducing false positives, increasing 
model reliability in real-world applications. The workflow began with careful dataset 
annotation and preparation to ensure compatibility with the YOLO framework. The annotated 
data were then processed and fed into each YOLO model for training. Hyperparameters were 
fine-tuned to optimize feature extraction, enabling accurate classification of various plastic 
waste types under diverse conditions. Following model evaluation, the best-performing YOLO 
configuration was selected based on mAP, accuracy, precision, recall, F1-score, and inference 
speed. This model was further refined through quantization and optimization to enhance speed 
and efficiency, making it suitable for real-time waste management deployment. The process 
flow, illustrated in Figure 3, highlights the seamless integration of data preparation, model 
training, and deployment, emphasizing the robustness of YOLO models in automated plastic 
waste detection. Figure 4 illustrates the training and validation loss during the model training 
of YOLO-10n and YOLO-11n. The overall training and validation box and class loss for 
YOLO-11n exhibit a smoother trend compared to YOLO-10n. 

 

Figure 3. YOLO process flow diagram. 
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(a) (b) 

Figure 4. Training of YOLO-10n (a); Training of YOLO-11n (b). 

2.2.2. Custom model design and training. 

The custom model developed in this study was specifically designed to address the dataset’s 
class imbalance while maximizing feature extraction and classification accuracy. Its 
architecture consisted of three convolutional layers with filter sizes of 16, 32, and 64, each 
paired with max-pooling and ReLU activation functions to capture intricate data patterns 
effectively. To prevent overfitting, two dense layers with 256 and 64 neurons were 
incorporated, along with a 50% dropout rate to enhance generalization. The model was trained 
over 40 epochs using an 80-20 training-testing split. To balance computational efficiency and 
accuracy, all images were resized to 180 × 180 pixels, and a batch size of 300 was used. 
Training was accelerated by utilizing two GPUs. The final output layer employed SoftMax 
activation to facilitate multi-class classification. Figure 5 illustrates the model’s architecture 
and configuration, highlighting the seamless integration of feature extraction, dimensionality 
reduction, and classification components. This optimized design ensures adaptability to diverse 
dataset characteristics while maintaining high classification performance. 

 

Figure 5. Custom model architecture. 

Figure 6 illustrates loss and validation loss and accuracy and validation accuracy during 
training over epochs and shows MobileNetV2 and Custom model with high accuracy with less 
loss compared to others. The transfer learning models evaluated include MobileNetV2, 
ResNet50, and EfficientNet. These models were fine-tuned on the WaDaBa dataset using a 
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batch size of 100 and learning rate of 1e-3. Prior research has demonstrated that transfer 
learning significantly reduces training time while improving model accuracy. 

 

Figure 6. Loss and validation loss vs. epochs for different models (a); Accuracy and validation accuracy vs. 
epochs for different models (b). 

3. Results and Discussion 

The models were evaluated using multiple performance metrics, including accuracy, precision, 
recall, F1-score, mAP, and inference time, with each model exhibiting unique strengths across 
different criteria. 

3.1. Result from YOLO models. 

 

Figure 7. YOLO models' predictions on unseen data. 

The YOLO-10n model exhibited well-rounded performance, achieving a precision of 0.9161, 
recall of 0.9460, F1-score of 0.9842, and mAP50 of 0.984, making it highly suitable for general 
applications requiring balanced performance across all metrics. Conversely, the YOLO-10m 
model, optimized for recall, achieved a recall of 0.9374, an F1-score of 0.9563, and an mAP50 
of 0.956, making it ideal for tasks prioritizing true positive detection, such as critical 
identification scenarios. YOLO-11n set a new benchmark for accuracy, attaining the highest 
accuracy of 0.9553, along with a precision of 0.9803 and an mAP50 of 0.992, making it 
particularly suitable for accuracy-intensive applications demanding precise classifications. 
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Meanwhile, YOLO-11m, designed to minimize false positives, achieved a precision of 0.9814 
and an mAP50-95 of 0.815, making it the optimal choice for applications where reducing false 
positives is crucial, such as high-stakes detection environments. Overall, the YOLO-11 models 
demonstrated superior performance, striking an excellent balance between accuracy and 
computational efficiency, making them ideal for practical deployment across various 
applications. The model predictions and their corresponding results are presented in Figure 7. 

3.2. Result from custom and transfer learning models. 

The custom model demonstrated impressive performance, achieving an accuracy of 93.05%, 
with precision, recall, and F1-score of 92.96%, 93.06%, and 92.98%, respectively. Trained 
over 40 epochs, the model completed its training in a swift 8 minutes and 1 second. 
Remarkably, it successfully classified all samples in an unseen test set of 8 images with 
complete accuracy. These results highlight the model’s robustness and consistency, 
underscoring its effectiveness in accurately distinguishing between various plastic waste 
categories. Such high performance across multiple evaluation metrics indicates that the custom 
model is well-suited for practical waste classification tasks. The outcomes of its predictions on 
unseen data are depicted in Figure 8, further validating its generalization capability. 

 

Figure 8. Custom model predictions on unseen data. 

MobileNetV2 emerged as the top performer among the transfer learning models, 
achieving an impressive accuracy of 97.12%. It also demonstrated exceptional precision 
(96.31%), recall (92.69%), and F1-score (94.26%) after a 40-epoch training period. Notably, 
MobileNetV2 achieved these results with a remarkably short training time of just 5 minutes 
and 34 seconds, highlighting both its efficiency and predictive strength. ResNet50 exhibited 
lower performance in this experiment, achieving an accuracy of 65.20%, precision of 65.43%, 
recall of 45.89%, and an F1-score of 20.01%. Despite a training time of 8 minutes and 31 
seconds over 40 epochs, the model correctly classified only 5 out of the 8 samples in the test 
set. EfficientNet demonstrated limited performance, achieving an accuracy of 53.25%, 
precision of 10.65%, recall of 20.00%, and an F1-score of 13.90%. With a training duration of 
6 minutes and 35 seconds, the model successfully predicted only 3 out of the 8 test images. 
This relatively poor performance on ResNet50 and EfficientNet both can be attributed to the 
challenges posed by the dataset's class imbalance, which hindered the model's ability to 
generalize effectively, particularly for minority classes.   
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3.3. Comparative analysis. 

The performance of YOLO models along with custom and CNN models is benchmarked using 
accuracy, precision, recall, F1-score, and the training time. Studies have shown that while 
mAP50 scores are typically high, mAP50-95 often drops significantly, indicating challenges in 
fine-grained localization. This decline suggests that YOLO models detect objects well but 
struggle with precise bounding box placement at higher IoU thresholds, particularly in 
occlusion-heavy or small object detection scenarios [19]. Furthermore, precision-recall (PR) 
curve analysis can help assess whether YOLO's higher recall comes at the expense of false 
positives, which can mislead real-world applications [20]. Comparative studies with Faster R-
CNN and EfficientNet have highlighted that YOLO's tradeoff between speed and accuracy 
often results in more localization errors at stricter IoU thresholds [21]. To strengthen these 
results, a breakdown of mAP50, mAP75, and mAP50-95, along with detailed PR curves, is 
necessary to capture performance trends across varying detection strictness [22].  Table 1 
summarizes the performance metrics for each model. Results indicate that YOLO models, 
especially YOLO-11n and YOLO-11m, and MobileNetV2 are the most effective for plastic 
waste classification. 

Table 1. Comparison of performance metrics of various models. 

Model Accuracy Precision Recall F1-score mAP50 
mAP50

-95 
Inference 

Speed 

Epo

ch 
Training 

Time 

YOLO-10n 0.9161 0.9460 0.9842 0.8706 0.984 0.807 0.2903 20 27m:5s 

YOLO-10m 0.8101 0.9374 0.9563 0.7685 0.956 0.78 5.9416 20 43m:12s 

YOLO-11n 0.9803 0.9740 0.9921 0.9553 0.992 0.813 0.2720 20 25m:34s 

YOLO-11m 0.9814 0.9657 0.9908 0.9483 0.991 0.815 1.2238 20 42m:40s 

Custom 0.9286 0.9280 0.9285 0.9276 - - 1.3841 40 8m:01s 

MobileNetV2 0.9712 0.9631 0.9269 0.9426 - - 1.4991 40 5m:32s 

RestNet50 0.6520 0.6543 0.4589 0.2001 - - 1.3260 40 8m:31s 

EfficientNet 0.5325 0.1065 0.2000 0.1390 - - 1.4448 40 6m:35s 

 

The inference time was measured to identify the best model for real-world deployment, 
revealing that YOLO-11n achieved the fastest performance at 0.2720s per inference, followed 
by YOLO-10n (0.2903s). In contrast, YOLO-10m had the slowest inference time (5.9416s). 
Among CNN models, ResNet50 performed best (1.3260s), while MobileNetV2 was the 
slowest (1.4991s). This benchmark provides insights into the performance of these models, 
highlighting critical factors influencing their suitability for this domain. The custom model, 
designed specifically to handle the imbalanced nature of the WaDaBa dataset, demonstrated 
strong classification capabilities. By employing targeted data augmentation strategies—such 
as random rotation, zoom, contrast adjustments, and flipping—we significantly increased the 
diversity of training samples. This enhancement improved the robustness of the custom model, 
leading to greater accuracy and generalization. Additionally, oversampling techniques were 
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applied to balance class distribution, mitigating biases during training and further optimizing 
model performance. These findings align with recent studies emphasizing the importance of 
data augmentation and class balancing for improving model accuracy in datasets with skewed 
distributions. From our experiment, we found that MobileNetV2 emerged as the most effective 
model, achieving a classification accuracy of 97%. Its lightweight architecture, designed for 
efficient deployment in mobile and edge computing environments, provided a significant 
advantage in balancing speed and accuracy. However, it fell behind ResNet50 in inference 
speed. The use of pre-trained ImageNet weights enabled MobileNetV2 to leverage rich feature 
representations, allowing it to generalize better to unseen data compared to the custom model. 
These findings align with previous research on the efficiency of MobileNetV2 in resource-
constrained settings. While MobileNetV2 excels in efficiency, it is less robust in complex 
environments. YOLO models, particularly YOLO-11, outperform MobileNetV2 in occlusion-
heavy, low-light, and small-object detection scenarios due to their superior spatial awareness 
and multi-scale feature extraction [23]. 

The custom model also showed competitive performance, demonstrating the potential of 
tailored architectures when designed with domain-specific data augmentation. In contrast, 
deeper architectures like ResNet50 and EfficientNet did not perform as well, with accuracies 
of 65% and 53%, respectively. EfficientNet struggled with feature extraction limitations, as its 
compound scaling assumes that increasing resolution, depth, and width will always improve 
accuracy. This assumption fails when images have low quality or domain-specific 
characteristics that do not benefit from higher resolution [24]. ResNet50 suffered from 
overfitting, as its deep residual blocks tended to memorize patterns in small or imbalanced 
datasets, leading to poor generalization in real-world noisy data [25]. This observation supports 
previous research suggesting that deeper models are not always the optimal choice when 
datasets are limited in size or require domain-specific feature extraction. The suboptimal 
performance of ResNet50 and EfficientNet underscores the importance of selecting models 
appropriately scaled to the dataset’s requirements, particularly when computational resources 
are limited. Additionally, our findings align with previous work on the application of deep 
learning for waste classification. For example, Ren et al. demonstrated the real-time object 
detection capabilities of YOLO models, which is consistent with the superior performance we 
observed in the YOLO-11 series during earlier phases of this study. However, our results 
indicate that in scenarios where computational resources are restricted, leveraging lightweight 
models like MobileNetV2 or optimized custom architectures may provide a more effective 
solution than relying on deeper models such as ResNet50 or EfficientNet. 

4. Conclusions 

This study explored deep learning approaches for detecting plastic waste, focusing on CNNs 
and YOLO models. The YOLO models (YOLO-11m and YOLO-11n) achieved high accuracy, 
exceeding 98%, but required longer training times. Meanwhile, CNN models—including the 
custom model, MobileNetV2, ResNet50, and EfficientNet—trained more quickly but exhibited 
lower accuracy, particularly ResNet50 and EfficientNet. Among all models, YOLO-11n had 
the fastest inference speed, making it ideal for real-world deployment, while ResNet50 
performed best among non-YOLO models. The study also highlights the potential of 
combining custom models with pre-trained, lightweight architectures like MobileNetV2 to 
improve the accuracy of plastic waste classification. The integration of data augmentation and 
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class balancing techniques significantly enhanced performance, particularly for the custom 
architecture. Future work should focus on further refining and generalizing the WaDaBa 
dataset, experimenting with more advanced augmentation techniques, and developing real-time 
solutions for automated waste management systems. 
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