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ABSTRACT: As the world continues to face the challenges of climate change, it is crucial to 

consider the environmental impact of the technologies we use. In this study, we investigate the 

performance and computational carbon emissions of various transfer learning models for 

garbage classification. We examine the MobileNet, ResNet50, ResNet101, and 

EfficientNetV2S and EfficientNetV2M models. Our findings indicate that the EfficientNetV2 

family achieves the highest accuracy, recall, f1-score, and IoU values. However, the 

EfficientNetV2M model requires more time and produces higher carbon emissions. ResNet50 

outperforms ResNet110 in terms of accuracy, recall, f1-score, and IoU, but it has a larger 

carbon footprint. We conclude that EfficientNetV2S is the most sustainable and accurate model 

with 96.41% accuracy. Our research highlights the significance of considering the ecological 

impact of machine learning models in garbage classification.  

KEYWORDS: Garbage classification; transfer learning; deep learning; waste management; 

carbon emission 

 

1. Introduction 

The escalating global waste crisis, projected to surge by 70% by 2050 without intervention [1], 

demands innovative solutions. Diverse waste management techniques, from source reduction 

to education initiatives, strive to combat this issue [2]. Yet, the absence of a standardized waste 

classification system results in regional disparities [3], emphasizing the need for efficient waste 

identification, crucial for integrated solid waste management [4]. Recent advancements 

leverage deep learning (DL) models to streamline waste sorting and management [5]. These 

models, like RWNet and ConvoWaste, exhibit high accuracy, emphasizing the role of accurate 

waste disposal in mitigating climate change and reducing greenhouse gas emissions.  

Some studies incorporate IoT and waste grid segmentation to classify and segregate 

waste items in real time [6]. Integration of machine learning (ML) models with mobile devices 

presents a promising avenue for precise waste management [7, 8]. As the advancements are 

happening, the computing related climate impact of ML models are not explored much. The 

Information and Communications Technology (ICT) industry contributes to about 1.4% of total 

global greenhouse gas (GHG) emissions. Out of this percentage, roughly one-third of the 

emissions are due to the production and management of physical materials [9]. Using transfer 

learning (TL) [10] various waste classification techniques have been purposed [11, 12] that 

shows promising results. However, the number of classes used here are quite limited and does 

not talks about the operational carbon emissions. Besides this, models like EfficientNetV2 that 

have faster training speed and better parameter efficiency has not been tested [13]. The aim of 
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this study is to conduct a thorough evaluation of TL models, focusing on various settings and 

hyperparameters, with a particular emphasis on the Garbage dataset [14]. We also implement 

model enhancement techniques to improve the performance of the selected model. 

Additionally, we analyze the computational carbon emissions of the evaluated models to 

establish metrics for sustainable computing in machine learning. 

2. Related Works 

The growing challenge of waste management has spurred research into automated 

classification methods using deep learning. This section explores existing works related to our 

study, focusing on transfer learning applications, deep learning architecture comparisons, and 

dataset and model choices. Several studies have demonstrated the effectiveness of transfer 

learning for waste classification. Lilhore et al. achieved a 95.45% accuracy for two waste 

categories using a hybrid CNN-LSTM model with transfer learning, highlighting its potential 

for efficient classification [15]. Similarly, Wulansari et al. employed transfer learning for 

medical waste classification with an impressive 99.40% accuracy [16], showcasing its 

adaptability to diverse waste types.  

While these studies offer valuable insights, our work specifically focuses on organic and 

residual waste classification, exploring the impact of transfer learning on both accuracy and 

training time for VGGNet-16 and ResNet-50 architectures. Comparing the performance of 

different deep learning architectures is crucial for identifying optimal solutions. Mehedi et al. 

compared VGG16, MobileNetV2, and a baseline Convolutional Neural Network (CNN) for 

waste classification, with VGG16 achieving a 96.00% accuracy [17]. Huang et al. proposed a 

combination model utilizing VGG19, DenseNet169, and NASNetLarge with transfer learning, 

achieving 96.5% and 94% accuracy on two datasets [18].  

These investigations demonstrate the effectiveness of pre-trained models and model 

fusion, while our work delves deeper into the performance variations between VGGNet-16 and 

ResNet-50 for organic and residual waste, analyzing their representation capabilities through 

dimensionality reduction techniques. The choice of dataset and model architecture plays a 

critical role in determining the success of waste classification systems. Srivatsan et al. used 

pre-trained models on the CompostNet dataset for 7-class waste classification, achieving 

96.42% accuracy with DenseNet121 [19]. Das et al. created a new 17,628-image dataset for 11 

trash categories and compared ResNet152, DenseNet169, and MobileNetV2, with 

DenseNet169 achieving 93.10% accuracy [20]. These examples highlight the importance of 

dataset size and diversity, and the impact of model selection on specific tasks. 

3. Methodology 

To classify the waste dataset, a TL approach was undertaken. Various state of the art transfer 

learning modes are used to train the model using the PyTorch framework. These model were 

pre-trained with ImageNet dataset and additional data augmentation techniques such as 

flipping, rotation, cropping, width and height were applied randomly. Additional layers such 

as GlobalAveragePooling2D, Dense and Dropout were added to improve classification 

accuracy. Both model training and testing were conducted using the Tesla T4 x2 GPUs 

available on Kaggle. 
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3.1. Dataset. 

The waste dataset consists of 23672 images, decomposed into ten classes: metal, glass, 

biological, paper, battery, trash, cardboard, shoes, clothes, and plastic. The number of image 

files contain in Metal class is 1869, Glass class is 4097, Biological class is 985, Paper class is 

2727, Battery class is 945, Trash class is 834, Cardboard class is 2341, Shoes class is 1977, 

Clothes class is 5325 and Plastic class is 2542. These images are collected from various internet 

sources and also from the MWaste misclassified images. The dataset contains various sizes of 

images and has a class imbalance as shown in Figure 1. Some of the sample images are shown 

in Figure 2. The class imbalance can negatively affect the training results of the model and 

cause it to be biased towards the largest class. 

 
Figure 1. Image count on each class of Garbage Dataset. 

 
Figure 2. Sample images from each class of the Garbage Dataset. 

There are different approaches to solving this problem, the applicability of which 

depends on the problem being solved [21]. We will use the method of insufficient sampling 

(random undersampling) [22], which consists of randomly excluding some examples from 

large classes. We limit the number of images in large classes to 1000 images. The updated class 

distribution is shown in Figure 3. Some classes are still sparse, to solve this data augmentation 

techniques are applied. The average height and width are calculated from dataset and is applied 

to the images. The dataset is then divided into three sets: train, test and val. The train data 

contains 80% of total images that will be used to train the model, the val set contains 10% and 
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is used for checking during training and adjusting parameters whereas the test contains 10% to 

evaluate the accuracy of the model on new data not used during training. 

 
Figure 3. Sample images from each class of the Garbage Dataset. 

3.2. Training and evaluation. 

Data augmentation techniques were utilized during model training to feed augmented data into 

the system. Various image transformation techniques [23], such as crops, horizontal flips, and 

vertical flips, were used for this purpose. The primary objective of this strategy was to prevent 

the neural network from overfitting to the training dataset, enabling it to generalize more 

effectively to unseen test data. Since pre-trained models were utilized, the input dataset was 

normalized to match the statistics (mean and standard deviation) of those models. The model 

was trained under various settings, and its accuracy was subsequently evaluated. The loss was 

quantified using categorical cross-entropy loss. To counteract potential issues of vanishing or 

exploding gradients during training, which could adversely affect the parameters, the gradient 

clipping technique [24] was employed with a value set to 1.0. The Adam optimizer was used 

combined with multiple learning rates, due to its proven efficacy in image classification tasks 

[25]. Regularization strategies, including early stopping, dropout, and weight decay [26], were 

also implemented to combat overfitting and to optimize time and resources. Various metrics 

such as accuracy, f1-score, recall, Intersection over Union (IoU) and operational emissions 

were recorded, including creating and productionalizing an ML model, data storage and 

processing, model training, and inference with the help of codecarbon. The carbon emission 

from code carbon is calculated using formula shown in Figure 4. 

 
Figure 4. Codecarbon carbon emission formula. 

4. Results and Dicussion 

This section presents the results obtained from EfficientNetV2M, EfficientNetV2S, 

MobileNet, ResNet-50 and ResNet101 models trained using pre trained transfer learning with 
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same settings. Metrics such as accuracy, recall, f1-score, IoU and the time taken to train the 

model are measured. Table 1 shows that the EfficientNetV2M and EfficientNetV2S has higher 

accuracy along with Recall, F1 score and IoU whereas ResNet50 has higher accuracy, Recall, 

F1 score and IoU than ResNet101. Meanwhile MobilNet has the least value. Both 

EfficientNetV2 models have higher IoU indicating superior object detection accuracy with 

consistent predictions across various levels of confidence and bounding box overlap [27]. The 

training time for EfficientNetV2M is highest among others and MobileNet has the lowest 

training time. 

Table 1. Comparative experimental results of EfficientNetV2M, EfficientNetV2S, MobileNet, ResNet50 and 

ResNet101 models with 20 epochs training time. 

Model Training Time Accuracy Recall F1 Score IoU 

EfficientNetV2M 8035.98 sec 96.37% 0.96 0.96 0.963 

EfficientNetV2S 6016.56 sec 96.07% 0.96 0.95 0.957 

MobileNet 2163.59 sec 68.89% 0.69 0.67 0.661 

ResNet50 5868.29 sec 94.63% 0.95 0.94 0.941 

ResNet101 7371.51 sec 94.46% 0.94 0.93 0.936 

The model’s operational carbon emission is also measured which is shown in Table 2. 

Here we can see that the carbon emission for EfficientNetV2S has lowest carbon emission 

while preparing data and moderate carbon emission on developing and deploying model. 

During training, a significant amount of computational resources is consumed [28]. By utilizing 

the code carbon emissions formula, we can observe that EfficientNetV2M and ResNet50 

consume more hardware resources. The MobileNet has lowest carbon emission while 

developing model and deploying model shown in Figure 5. 

Table 2. Carbon emission amount at various stages of EfficientNetV2M, EfficientNetV2S, MobileNet, 

ResNet50, and ResNet101 models with 20 epochs training time. 

Model 
Carbon Emission (Kg CO2) 

Prepare Data Develop Model Deploy Model 

EfficientNetV2M 0.002217 0.151638 0.156662 
EfficientNetV2S 0.000483 0.036457 0.037580 
MobileNet 0.000974 0.025888 0.027469 
ResNet50 0.001111 0.111764 0.114827 
ResNet101 0.001383 0.089301 0.092323 

 

 

Figure 5. Carbon emission of each model at various stage 
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The accuracy of the model for EfficientNetV2M, EfficientNetV2S, ResNet50 and ResNet101 

increase as it trains longer; whereas, the accuracy doesn’t increase for MobileNet after 12 

epochs shown in Figure 6 (a). Similarly, the loss decreases for all models except MobileNet 

after 13 epochs as depicted in Figure 6 (b). 

 
Training accuracy at different iterations  Evaluation loss at different iterations 

Figure 6. Comparison of loss and accuracy of models at different epochs. 

 

 
 Figure 7. Comparison of loss and accuracy of models at different epochs 

The confusion matrix for EfficientNetV2M model is shown in Figure 7(a) and 

EfficientNetV2S model in Figure 7(b). From our experiment, we found that the 

EfficientNetV2S has higher accuracy, recall, f1-score and IoU than MobileNet, ResNet50 and 

ResNet101. Also, carbon emission is moderate for preparing data, developing model and 

deploying model comparing to others. To find the best hyperparameter we used optuna [29], 

where we define the objective and get the best value that matches our objective. The best 

hyperparmeter is selected and applied. Figure 8 shows the optimization history plot. After 

applying the optimal hyper parameters the accuracy increased slightly, the new accuracy is 

96.41%. 
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Figure 8. Optimization history plot of EfficientNetV2S model. 

5. Conclusions 

During our research, we investigated various transfer learning models using a garbage dataset 

with pre-trained weights. We evaluated the computational carbon emissions of each model and 

compared their accuracy, recall, f1-score, and IoU. It is essential to note that the data collection 

process also plays a role in contributing to emissions. Our findings indicate that the 

EfficientNetV2 family outperforms MobileNet, ResNet50, and ResNet101 in terms of 

accuracy, recall, f1-score, and IoU. EfficientNetV2M, with more layers than EfficientNetV2S, 

yielded better results but required longer training time and resulted in higher computational 

carbon emissions. Conversely, the ResNet family demonstrated moderate accuracy, while 

MobileNet exhibited the lowest accuracy. We observed that ResNet50 achieved higher 

accuracy and better recall, f1-score, and IoU values than ResNet110 while requiring less 

training time. However, ResNet50 had a higher computational carbon emission compared to 

other models. After comprehensive analysis of the models' training time, accuracy, recall, f1-

score, IoU, and computational carbon emissions, we concluded that EfficientNetV2S is the 

most sustainable model with superior accuracy. Additionally, we found that slight adjustments 

to hyperparameters contributed to increased accuracy. 
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