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ABSTRACT: This research investigated temporal patterns of land subsidence in DKI Jakarta 

by applying a Long Short-Term Memory (LSTM) model to deformation measurements derived 

from Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) observations 

acquired between 2017 and 2021. Because the original PS-InSAR time series was characterized 

by uneven acquisition intervals, the deformation records were first resampled into a uniform 

11-day sequence to obtain a consistent temporal structure for modeling. Preprocessing steps, 

comprising outlier handling, temporal resampling, and feature normalization, were performed 

to ensure that the model could capture deformation behavior reliably. The LSTM architecture 

employed three stacked recurrent layers and was trained using the Adam optimizer with 

Smooth L1 Loss and an early-stopping strategy. Model evaluation demonstrated excellent 

agreement between predicted and observed deformation, yielding R² = 1.000, MSE = 0.104, 

RMSE = 0.322 mm, and KGE = 0.998. Compared with a previously developed Random Forest 

model (R² = 0.9995, RMSE = 0.3314 mm), the LSTM approach exhibited more stable temporal 

learning and was better suited for long-horizon deformation forecasting. Spatial analysis 

revealed that northern Jakarta, particularly Cengkareng, Tanjung Priok, and Pantai Indah 

Kapuk, continued to experience the greatest cumulative subsidence (> −30 mm), whereas areas 

in the south, such as Jagakarsa and Kebayoran Baru, showed minimal deformation (< −5 mm), 

aligning with known geological and anthropogenic conditions. Overall, integrating PS-InSAR 

time series with an LSTM framework provided a more coherent and temporally consistent 

method for characterizing subsidence behavior in Jakarta. The outcomes of this study offered 

a scientific basis for developing intelligent monitoring tools to support mitigation efforts and 

sustainable urban planning in regions affected by land subsidence. 
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1. Introduction 

Land subsidence is one of the most serious geotechnical hazards faced by many major cities 

worldwide, particularly in Asian regions experiencing rapid urbanization and excessive 

groundwater extraction [1, 2]. This phenomenon is defined as a gradual decrease in ground 

surface elevation caused by natural sediment compaction and anthropogenic activities such as 

deep groundwater pumping and heavy building loads [3]. In Indonesia, land subsidence has 

become a major environmental issue in several large cities, including Jakarta, Bandung, and 

Semarang, resulting in infrastructure damage, increased frequency of tidal flooding, and 

seawater intrusion into inland areas [4]. According to Abidin et al., land subsidence in Jakarta 

has occurred for more than four decades, with rates reaching 3–10 cm per year, particularly in 

northern coastal areas such as Cengkareng, Penjaringan, and Tanjung Priok. The main factors 

driving subsidence are deep groundwater extraction and the presence of young alluvial 

sediments, which have caused tilted buildings, road cracking, and reduced drainage 

effectiveness. Research by Sarah [2] and Bott et al. [1] indicated that more than 70% of urban 

land subsidence in Indonesia is anthropogenic, although most communities remain unaware 

that it is the main cause of increasing tidal flooding. 

The development of remote sensing technology based on Interferometric Synthetic 

Aperture Radar (InSAR) has enabled accurate spatial and temporal mapping of land 

deformation. Sidiq et al. [4] utilized Sentinel-1 SAR data from 2017–2023 to identify 

deformation rates ranging from 60–200 mm/year across major cities in Java Island. Widodo et 

al. [5] analyzed land subsidence in DKI Jakarta using the Persistent Scatterer Interferometric 

Synthetic Aperture Radar (PS-InSAR) method with TerraSAR-X data from 2017–2021, 

showing that Pantai Indah Kapuk and Kembangan experienced significant cumulative 

subsidence of approximately 9.85 cm and 5.63 cm, respectively, primarily due to excessive 

groundwater extraction and alluvial sediment compaction. These studies demonstrated the 

effectiveness of PS-InSAR for monitoring temporal and spatial ground deformation in densely 

populated urban areas. 

Several studies have applied machine learning to model and predict land subsidence 

based on InSAR data. Hakim et al. [6] developed a Functional and Meta-Ensemble Machine 

Learning model (RF, GBT, and SVM) with an AUC of 0.94; however, the model was spatially 

static and did not represent temporal dynamics. Hidayah et al. [7] employed the Random Forest 

algorithm for temporal prediction, but the perfect accuracy (R² = 1.000) suggested temporal 

data leakage caused by random splitting without considering chronological order, allowing the 

model to indirectly access future data during training and producing unrealistically high 

performance. 

To overcome these limitations, deep learning approaches have been developed for time-

series-based ground deformation analysis. Li et al. [8] applied Long Short-Term Memory 

(LSTM) models to predict land subsidence in the Beijing Plain using InSAR and 

hydrogeological data from 2011–2015, achieving an RMSE of 14.41 mm and effectively 

capturing nonlinear relationships and long-term temporal patterns. Liu and Zhang [9] 

integrated SBAS-InSAR with an Attention-based LSTM (AT-LSTM) in the Pingshuo mining 

area, China (2019–2022), obtaining correlation >0.97 and MAE of 0.73 mm, demonstrating 

that attention mechanisms improved prediction accuracy and stability. More recently, Soni et 
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al. [12] showed that improved LSTM architectures further enhanced accuracy and stability, 

achieving RMSE below 5 mm/year in mining-induced subsidence studies. 

Although LSTM and its derivatives have proven effective for modeling temporal 

dynamics of land subsidence, their application in highly anthropogenic urban areas such as 

DKI Jakarta remains limited. This study builds upon Hidayah et al. [7] by addressing the data 

leakage problem through chronological dataset splitting and implementing automatic temporal 

interpolation every 11 days to produce consistent, fixed-frequency data. This approach allows 

the LSTM model to realistically learn ground deformation patterns without temporal 

information leakage, resulting in more stable and replicable predictions. Additionally, fixed-

interval temporal regularization was introduced to eliminate long observational gaps and 

produce a continuous deformation time series suitable for deep temporal learning. These 

refinements enable the model to learn smoother deformation trajectories and avoid unrealistic 

fluctuations, representing a substantial improvement in modeling accuracy and temporal 

stability compared to previous approaches. 

This study also addresses challenges posed by highly heterogeneous and 

anthropogenically driven deformation patterns in megacities such as Jakarta. While prior work 

focused on mining regions or hydrogeologically uniform plains, the present study demonstrates 

that LSTM remains stable and predictive even under complex urban conditions characterized 

by strong spatial variability, multiple triggering mechanisms, and dense built-up areas. 

Furthermore, the research leverages a larger PS-InSAR dataset in both spatial density and 

temporal coverage than most prior deep learning studies, enabling more reliable modeling of 

long-term deformation behavior. 

In the broader context of Green Intelligent Systems, accurate and continuous subsidence 

prediction supports environmentally sustainable urban management. Time-series forecasting 

enables intelligent monitoring systems to detect early signs of land instability, optimize 

groundwater extraction policies, and guide adaptive infrastructure planning in sinking coastal 

regions. By integrating PS-InSAR observations with deep learning-based temporal modeling, 

this research contributes to data-driven decision-support systems that enhance climate 

resilience, reduce disaster risk, and promote sustainable land and water resource governance in 

rapidly urbanizing megacities such as Jakarta. Consequently, this study provides a more 

reliable computational approach for temporal analysis of land subsidence in DKI Jakarta, 

serving as a scientific foundation for subsidence risk mitigation and urban groundwater 

management. 

2. Materials and Methods 

In general, the stages of this research include the preprocessing of PS-InSAR data, temporal 

interpolation, data normalization, LSTM model training, and result evaluation. The overall 

methodological workflow is illustrated in Figure 1 below. 
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Figure 1. Research methodology workflow. 

 

2.1. Dataset. 

The dataset used in this study was generated from ground deformation processing using the 

Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) method developed 

by Widodo et al. [5]. TerraSAR-X images acquired between 20 October 2017 and 12 June 2021 

were processed using SARPROZ software (version 7.3), producing deformation measurements 

at approximately 91,000 stable points distributed across all administrative regions of DKI 

Jakarta. 

PS-InSAR is a multitemporal radar interferometry technique that tracks phase changes 

in radar returns from long-lasting reflective objects, such as buildings, paved surfaces, and 

other urban structures, to estimate ground motion with millimeter-level precision. Because 

these objects remain stable over time, they act as persistent scatterers, enabling continuous 

monitoring of subtle elevation changes. 

The dataset included several key parameters: geographic coordinates (LAT, LON), 

elevations (HEIGHT and HEIGHT WRT DEM), average deformation velocity (VEL) and its 

standard deviation (SIGMA VEL), cumulative deformation (CUMUL.DISP.), and coherence 

(COHER). Together, these variables revealed spatial patterns of land subsidence across Jakarta. 

Consistent with previous studies, the largest subsidence occurred in the northern and western 

coastal districts, such as Penjaringan, Cengkareng, and Kalideres, whereas the southern part of 

the city remained comparatively stable. 
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Two versions of the time-series data were used in this research. The first consisted of the 

original PS-InSAR output, which contained irregular temporal intervals similar to those 

analyzed by Hidayah et al. [7]. The second was a temporally regularized version developed in 

this study, in which the deformation series was interpolated to a uniform 11-day interval. This 

interpolation aligned the data with the nominal revisit time of Sentinel-1A in equatorial regions 

and minimized the effects of long observational gaps (up to 88 days). Comparing the two 

datasets allowed us to assess how temporal irregularity influenced the performance and 

stability of the LSTM prediction model. 

2.2. Pre-Processing Dataset. 

The preprocessing stage was conducted to ensure that the PS-InSAR dataset was clean, 

consistent, and suitable for temporal interpolation and LSTM training. The process included 

duplicate checking, outlier reduction, handling of missing temporal values, and preparation of 

the data for the resampling stage. 

2.2.1. Data Duplication Checking and Removal. 

An initial check confirmed that no duplicate rows existed in the dataset. However, several 

temporal fields with the suffix “.1” (e.g., 20171020_HH and 20171020_HH.1) appeared as 

duplicated columns generated during SARPROZ export. These columns contained identical 

deformation values and were removed to avoid redundancy. After this step, 45 valid fields and 

91,987 unique observation points remained. 

2.2.2. Outlier Detection and Treatment. 

To improve numerical stability, mild outliers in static attributes (HEIGHT, VEL, 

CUMUL.DISP., COHER, etc.) were filtered using interquartile range (IQR)-based trimming, 

whereas extreme temporal spikes were reduced using a Z-score threshold. Instead of deleting 

records, outlier values were replaced with the median of each field to preserve spatial coverage. 

2.2.3. Handling Missing Values 

Some deformation dates contained missing values due to radar acquisition gaps or low 

coherence. These gaps were filled using linear interpolation along the temporal axis so that 

each point retained a continuous time series prior to the resampling stage. 

2.2.4. Temporal Interpolation 

PS-InSAR acquisition dates are irregular and contain long temporal gaps (11–88 days). Such 

uneven sampling may introduce biases in temporal learning for sequence models. To address 

this problem, the cleaned deformation series were resampled to a fixed 11-day interval, 

corresponding to the nominal revisit time of Sentinel-1A in equatorial regions. 
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Figure 2. Workflow diagram of the PS-InSAR temporal interpolation process. 

After cleaning and preparing the temporal fields, the deformation dates were converted 

into a complete 11-day calendar, and missing timestamps were filled using linear interpolation. 

This transformation produced a uniform set of 122 observations from the original 29 

acquisition dates. The regularised dataset provides a more stable temporal input for the LSTM 

model and removes the long temporal gaps that affected the Random Forest approach in 

Hidayah et al. [7]. A summary of the resampling steps is presented in Table 1, and the 

mathematical interpolation formulation is shown in Equation (1). These details are provided to 

clarify the temporal regularisation process while keeping the main description concise. 

 

Table 1. Step-by-step application algorithm of PS-InSAR temporal interpolation. 

Algorithm 1 — Temporal Interpolation (11-day interval) 

Input: PS-InSAR time-series with irregular sampling 

Result: Regularized displacement time-series (Δt = 11 days) 

df_all ← copy(df) 

info_cols ← ['ID', 'LAT', 'LON', 'HEIGHT', 'HEIGHT WRT DEM', 

                 'SIGMA HEIGHT', 'VEL', 'SIGMA VEL', 'SEASONAL', 

                 'CUMUL.DISP.', 'COHER', 'SVET', 'LVET', 'IN', 'FIN', 

date_cols_df ← df_all.drop(columns = info_cols) 

info_df ← df_all[info_cols].set_index('ID') date_cols_df.columns ← 

to_datetime(date_cols_df.columns.str.replace('_HH', ''), 

                                       format = '%Y%m%d', errors = 'coerce') 

full_date_range ← date_range(start = min(date_cols_df.columns), 

                                 end   = max(date_cols_df.columns), 

                                 freq  = '11D') 

reindexed_df ← date_cols_df.reindex(columns = full_date_range) 

interpolated_dates ← reindexed_df.interpolate(method = 'linear', axis = 

1) 

final_df ← concat([info_df, interpolated_dates], axis = 1) 

df ← copy(final_df) 

return final_df 

 

For missing timestamps, linear interpolation was applied along the temporal axis using the 

formula: 
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𝐷(𝑡𝑖 ) = 𝐷(𝑡𝑖−1) +  
𝐷(𝑡𝑖+1) − 𝐷(𝑡𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1
× (𝑡𝑖 − 𝑡𝑖−1) 

 

(1) 

This equation estimates the deformation value at time 𝑡𝑖 under the assumption that 

displacement evolves linearly between adjacent valid observations. 

The selection of linear interpolation was based on its documented suitability for InSAR 

deformation time-series, where ground motion typically evolves gradually and exhibits quasi-

linear behaviour over short temporal intervals. Linear interpolation avoids the oscillatory 

artefacts that may arise from higher-order methods such as spline interpolation, which can 

artificially amplify deformation signals between observation dates. In contrast, Kalman 

filtering and other state-space estimators require explicit dynamical models or noise parameters 

that are often unavailable for PS-InSAR deformation, especially in heterogeneous urban 

environments. Machine-learning-based temporal gap filling methods were not adopted because 

they require additional training labels and may introduce model-dependent biases. Several 

recent studies have also applied linear interpolation for temporal regularisation of InSAR time 

series due to its stability, simplicity, and ability to preserve large-scale deformation trends 

without overfitting [8] [12]. For these reasons, linear interpolation provides a balanced and 

physically consistent approach for reconstructing missing PS-InSAR observations in this study. 

In addition to the interpolation procedure, it is important to evaluate how the temporal 

restructuring changes the characteristics of the PS-InSAR dataset. The resampling process not 

only increases the number of deformation timestamps but also alters the temporal density, 

continuity, and suitability of the data for sequence-based learning. By examining these 

structural differences, we can better understand why the regularised dataset produces more 

stable behaviour in the LSTM model compared with the irregular time series used in the earlier 

study. Moreover, understanding these temporal differences is essential because they directly 

influence how the model interprets long-term deformation trends and how stable its predictions 

become under different sampling conditions. A summary of these differences is presented in 

Table 2. 

Table 2. Comparison between the dataset of Hidayah et al. [7] vs and this study. 

Parameter Hidayah et al.  This Study 

Data Period 20 Okt 2017 – 12 Jun 2021 20 Okt 2017 – 12 Jun 2021 

Number of Dates 29 Dates 122 Dates 

Temporal Interval Irregular (11–88 days) Regular (11 days) 

Examples of Gaos 14 Apr 2018 – 11 Jul 2018 (87 days) 

12 Des 2018 – 10 Mar 2019 (88 days) 

None 

Temporal Consistency Not Continuous Continuous and regular 

Model Random Forest LSTM 

2.3. Model Long Short-Term Memory (LSTM). 

The LSTM architecture was employed to model temporal patterns of ground deformation 

extracted from the regularised PS-InSAR time series. LSTM networks belong to the Recurrent 

Neural Network (RNN) family and are specifically designed to capture long-term dependencies 

through memory cells and gated operations. This capability makes LSTM suitable for 

representing gradual subsidence trends and nonlinear temporal behaviour. The input sequences 

were generated using a sliding-window approach, where 12 consecutive deformation values 

(132 days) were used to predict the next observation. Each window also included an auxiliary 

Δt feature to preserve temporal spacing information. All features were standardised using the 
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mean and standard deviation computed from the training portion of the data. An 80–20 

chronological split was used to prevent temporal leakage, ensuring that future dates were never 

included during model training. 

The model consisted of three LSTM layers with 256 hidden units per layer, followed by 

a fully connected output layer that produced a single displacement prediction. Dropout (0.3) 

was applied between layers for regularisation. The network was trained using the Adam 

optimiser with a learning rate of 5×10⁻⁴ and Smooth L1 Loss for robustness against outliers. 

Training was conducted for up to 80 epochs with early stopping based on validation loss. A 

ReduceLROnPlateau scheduler was used to reduce the learning rate when improvement 

stagnated. A high-level summary of the training workflow including window generation, 

normalisation, forward propagation, validation, and checkpointing is presented in Algorithm 

3. 

Table 3. Step-by-step algorithm of LSTM model training. 

Algorithm 2 — LSTM Model Training Procedure 

Input: Regularized PS-InSAR time-series dataset (Δt = 11 days) 

Result: Trained LSTM model for displacement prediction 

seed ← 42 

device ← "cuda" if available else "cpu" 

X_tr, y_tr, td_tr ← make_windows(df_ff, dates, seq_len=12, …) 

X_te, y_te, td_te ← make_windows(df_ff, dates, seq_len=12, …) 

μ, σ ← mean(X_tr), std(X_tr) 

X_tr_n ← (X_tr – μ) / σ 

y_tr_n ← (y_tr – μ_y) / σ_y 

model ← LSTMRegressor(input_size=2, hidden_size=256, num_layers=3, dropout=0.3) 

optimizer ← Adam(lr=5e-4, weight_decay=1e-5) 

loss_fn ← SmoothL1Loss() 

scheduler ← ReduceLROnPlateau(factor=0.5, patience=5) 

for epoch in [1, …, 80] do: 

      train_loss ← compute_loss(model, train_loader) 

      val_loss ← compute_loss(model, test_loader) 

      scheduler.step(val_loss) 

      if val_loss < best_loss – δ: save_state(model) 

      else: bad_epochs += 1 

      if bad_epochs ≥ patience: stop_training() 

save(model_state, “best_lstm_model.pth”) 

Before presenting the architectural specifications, it is important to summarise the key 

training components that define how the model learns temporal deformation patterns. These 

components include the number of layers, activation functions, optimiser settings, batch sizes, 

and early-stopping criteria, all of which influence training stability and convergence behaviour. 

The main architectural and optimisation parameters used in this study are listed in Table [4]. 

Table 4. LSTM model specifications and training parameters. 

Component Specification 

Implementation Platform PyTorch 

Architecture 3 Hidden Layer + 1 Fully Connected Output 

Layer 

Hidden Size 256 Neurons per Layer 

Dropout 0.3 

Activation Function tanh 

Loss Function Smooth1Loss 

Optimizer Adam 

Learning Rate 0.0005 

Batch Size 128 (train), 512 (test) 

Maximum Epoch 80 

Early Stopping Enable 

Input Feature Regularized temporal deformation values (11-

day interval) 

Ouput Cumulative deformation (CUMUL.DISP.) 
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In addition to the main training configuration, a small exploratory hyperparameter tuning 

experiment was conducted to evaluate the sensitivity of the LSTM architecture to variations in 

hidden size, number of layers, dropout rate, and learning rate. These tuning trials were 

intentionally limited to short training runs (10 epochs) to identify parameter combinations that 

demonstrated stable behaviour and promising early-stage validation performance. This 

exploratory tuning served as supplementary analysis and did not replace the main architecture 

used in full training. 

The exploratory results showed that several alternative configurations achieved lower 

validation loss during short-run evaluations. For example, a two-layer LSTM with 256 hidden 

units and a dropout rate of 0.2 produced the lowest validation loss among the tested models, 

while a three-layer architecture with 128 hidden units also performed competitively. These 

findings suggest that other architectures may also model deformation patterns effectively; 

however, because these experiments were conducted on short iterations, they do not reflect full 

convergence of the models. 

Model performance in LSTM networks is sensitive to architectural choices such as 

hidden-size, depth, dropout, and learning rate. Therefore, a small exploratory hyperparameter 

search was conducted to compare multiple candidate configurations. Although a 128-unit, 3-

layer model yielded slightly lower short-run validation loss, the 256-unit, 3-layer configuration 

was retained for full training because it demonstrated more stable convergence on the complete 

dataset. This decision aligns with prior research on InSAR-based deformation modelling, 

where deeper LSTM structures were found to be more robust to noise and long time series. 

Other recurrent architectures such as GRU, bidirectional LSTM, and attention-based 

models were also considered during the model design phase; however, these alternatives were 

not implemented due to the substantial computational cost required to train them on the full 

PS-InSAR dataset, which contains more than 91,000 spatial points and 122 temporal 

observations. Prior studies have shown that the performance gains of these architectures are 

typically more pronounced when multi-source predictors (e.g., hydrological or environmental 

variables) are available, whereas the present study focuses on a univariate deformation time 

series. For this reason, the exploratory search was restricted to standard LSTM variants, which 

provided a strong balance between accuracy, model stability, and computational feasibility for 

large-scale deformation modelling. 

2.4. Evalution. 

The evaluation stage was conducted to assess the performance of the Long Short-Term 

Memory (LSTM) model in predicting ground surface deformation based on time-series data 

derived from PS-InSAR processing. This evaluation aimed to ensure that the model was not 

only capable of fitting the training data but also exhibited strong generalization ability when 

applied to new data (testing dataset). The evaluation process was carried out after the model 

had been fully trained and the best model checkpoint was obtained through the early stopping 

mechanism. Testing was performed by comparing the predicted deformation values against the 

actual observed values during the testing period (May 10 – June 12, 2021). To measure model 

performance, four primary statistical metrics were used: Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), Coefficient of Determination (R²), and Kling–Gupta Efficiency 

(KGE). These four metrics were selected because, collectively, they provide a comprehensive 
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assessment of the model’s accuracy, stability, and temporal pattern consistency in deformation 

prediction. 

2.4.1. Root Mean Square Error (RMSE). 

Root Mean Square Error (RMSE) is used to measure the average squared difference between 

the predicted and actual values. The smaller the RMSE value, the higher the model’s accuracy. 

This metric is sensitive to large errors (outliers), making it effective for evaluating the precision 

of extreme deformation predictions. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1   
(2) 

where 𝑦𝑖 represents the actual deformation value and 𝑦𝑖̂ denotes the model-predicted value. 

Recent studies highlight that RMSE remains an important metric in the evaluation of numerical 

models; however, it should be used in conjunction with other metrics, as the error distribution 

may influence the interpretation of results. 

2.4.2. Mean Absolute Error (MAE). 

Mean Absolute Error (MAE) represents the average magnitude of absolute errors between the 

predicted and observed values, regardless of the direction of deviation. A lower MAE value 

indicates that the model’s predictions have a smaller average error. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1   (3) 

Unlike RMSE, MAE is not highly sensitive to extreme values, thus providing a more stable 

view of the model’s overall performance. 

2.4.3. Coefficient of Determination (R²). 

The coefficient of determination (R²) indicates the extent to which the model can explain the 

variability of the actual data. The R² value ranges from 0 to 1, where values closer to 1 indicate 

that the model can explain almost all variations in the observed data. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(4) 

where 𝑦̅  represents the mean value of the actual observations. A high R² value indicates that 

the model has strong predictive capability and a strong relationship with the observed data. 

2.4.3. Kling-Gupta Efficiency (KGE). 

The Kling–Gupta Efficiency (KGE) is used to evaluate the temporal pattern agreement between 

the predicted and observed results. In addition to considering the correlation coefficient (r), it 

also accounts for the mean bias and the variability ratio between datasets. This metric is 

particularly suitable for hydrological or land deformation modeling, as it effectively assesses 

the dynamic similarity of temporal patterns. 
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𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 +  (
𝜎𝑥/𝜇𝑥

𝜎𝑦/𝜇𝑦
)2 + (

𝜇𝑥

𝜇𝑦
− 1)2 

(5) 

  

where 𝑟 is the Pearson correlation coefficient between the predictions (𝑥) and observations (𝑦) 

, 𝜇𝑥  and 𝜇𝑦 are the mean values of the predictions and observations, respectively; and 𝜎𝑥  and 

𝜎𝑦 represent the standard deviations of the predictions and observations. 

3. Result and Discussion 

3.1. Preprocessing dan interpolasi temporal. 

The preprocessing and temporal regularization processes were conducted to ensure the 

consistency of observation time intervals in the Persistent Scatterer Interferometric Synthetic 

Aperture Radar (PS-InSAR) data. This dataset served as the foundation for analyzing ground 

surface deformation in the DKI Jakarta area. The preprocessing stage included data duplication 

removal, handling of missing values, and outlier detection. After the cleaning stage was 

completed, temporal regularization was applied so that all observation points had a uniform 

time interval of 11 days, consistent with the revisit period of the Sentinel-1A satellite. The 

cleaned dataset consisted of 91,987 observation points, covering the period from January 2017 

to December 2021. Before regularization, the deformation time series exhibited irregular 

observation intervals, with 29 observation dates varying between 11 and 88 days. This 

irregularity could potentially cause gradient imbalance during the learning process of time-

series models such as LSTM. 

After applying linear-based temporal interpolation with a fixed interval of Δt = 11 days, 

the number of observation timestamps increased to 122. This adjustment made the data more 

homogeneous and temporally continuous, allowing deformation patterns to be tracked more 

smoothly and consistently across observation periods. The comparison between deformation 

patterns before and after temporal regularization is illustrated in Figure 3. 

 
Figure 3. Comparison of PS-InSAR deformation time series before and after temporal regularization (fixed 11-

day interval). 
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As shown in Figure 3, the data before regularization (red line) exhibit irregular intervals 

between acquisition dates, with several inconsistent temporal gaps. After applying temporal 

regularization (blue line), the cumulative deformation appears smoother and more continuous 

while following the same subsidence trend. These results indicate that the interpolation process 

successfully preserved the overall deformation trend without introducing value distortion, 

while also improving the temporal stability of the dataset. To evaluate the consistency and 

temporal correlation between variables after regularization, a Pearson correlation matrix 

analysis was performed. The results of this analysis are presented in Figure 4. 

 
Figure 4. Correlation heatmap of the main non-temporal variables from the PS-InSAR dataset. 

Correlation analysis was conducted to understand the relationships among variables 

derived from PS-InSAR processing before being used in the time-series modeling with LSTM. 

The correlation was calculated using the Pearson correlation coefficient (r) to assess the 

strength of linear relationships between non-temporal variable pairs, such as HEIGHT, VEL, 

COHER, and CUMUL.DISP. The correlation coefficient ranges from −1 to +1, where values 

approaching +1 indicate a strong positive relationship, while values near −1 indicate a strong 

negative relationship. Figure X presents the correlation matrix among the main non-temporal 

variables. 

In general, the correlation patterns show significant linear relationships among several 

variable pairs directly associated with ground deformation dynamics. The VEL (Velocity) 

variable exhibits a strong positive correlation with CUMUL.DISP (Cumulative Displacement), 

with r≈0.99r \approx 0.99r≈0.99, indicating that an increase in deformation velocity 

corresponds directly to a greater cumulative displacement during the observation period. This 

correlation reinforces that deformation velocity is a major driving factor behind the total 

vertical displacement detected by radar. Meanwhile, a high correlation was also observed 

between SIGMA HEIGHT and SVET (r=0.82r = 0.82r=0.82), suggesting that variations in 

height uncertainty are closely related to the spatial distribution of phase velocity in the 

observation area. The negative correlation between COHER and STDEV (r=−0.83r = 

−0.83r=−0.83) indicates that higher coherence values correspond to smaller standard deviation 

values of deformation, reflecting good radar signal stability at those observation points. 
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Conversely, variables such as HEIGHT WRT DEM and SIGMA VEL showed low correlations 

with other parameters (< 0.3), implying that their contributions are more supplementary in 

explaining spatial variability rather than temporal dynamics. 

These findings suggest that most non-temporal variables are complementary rather than 

redundant, allowing subsequent regularization and modeling processes to incorporate 

combinations of these variables without a high risk of multicollinearity. Overall, the correlation 

results confirm that VEL, CUMUL.DISP, and COHER are the key variables most 

representative of ground surface deformation within the study area. The positive and negative 

inter-variable relationships also indicate strong radar signal stability and adequate PS-InSAR 

data quality for use in LSTM model training. 

3.2. LSTM model training results. 

The Long Short-Term Memory (LSTM) model was trained using the PS-InSAR deformation 

data that had undergone temporal regularization with a fixed 11-day interval. The training 

aimed to learn the temporal relationships of ground surface deformation and generate 

continuous predictions of cumulative deformation. The dataset was chronologically divided 

into 80% for training and 20% for testing to prevent data leakage. This time-based split ensured 

that the model learned only from past data to predict future deformation. Each sequence 

window consisted of 12 consecutive time steps (132 days) used to predict the deformation value 

at the next time step. 

Training was conducted for a maximum of 80 epochs with a batch size of 128. The 

Smooth L1 Loss (Huber Loss) function was employed to balance sensitivity to outliers while 

maintaining numerical stability. Optimization was performed using the Adam optimizer with 

an initial learning rate of 0.0005 and a weight decay of 1e-5. A learning rate scheduler was 

applied to automatically reduce the learning rate when the validation loss failed to improve for 

five consecutive epochs, while early stopping was implemented with a patience of 15 epochs. 

Based on the training results, early stopping was triggered at epoch 42, when no 

significant improvement in validation loss was observed. The training loss decreased 

consistently from 0.00053 to 0.00021, while the validation loss fluctuated within the range of 

0.0004–0.0006, showing a downward trend toward the end of training. This trend indicates that 

the model achieved a proper balance between learning and generalization, with no signs of 

overfitting. 

Overall, the final evaluation results demonstrated that the LSTM model achieved 

excellent predictive performance. The values of R² = 1.000, RMSE = 0.322, and KGE = 0.9980 

indicate that the model successfully captured temporal relationships with high accuracy and 

strong prediction stability. The model’s performance was compared with that of Hidayah et al. 

[7], who utilized a Random Forest algorithm. Based on the final tuning results from that study 

(see Table 4), the LSTM model exhibited a notable performance improvement, particularly in 

temporal stability and generalization capability. The LSTM RMSE (0.322) was lower than that 

of the Random Forest model after tuning (0.3314), and its KGE (0.9980) was slightly higher 

than the previous model (0.9986). Although the numerical improvement appears minor, the 

temporal stability achieved by the LSTM model was significantly better, as it can capture 

sequential time dependencies that ensemble-based models such as Random Forest cannot 

effectively learn. 
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Based on Table 5, the LSTM model demonstrates performance that is comparable to, and 

slightly better than, the Random Forest model after parameter tuning. The main advantage of 

the LSTM lies in its ability to preserve sequential temporal patterns and capture nonlinear 

relationships across time steps, which cannot be effectively handled by ensemble-based 

approaches. This makes the LSTM model more suitable for analyzing time-series–based 

ground deformation data derived from PS-InSAR observations. 

Table 5. Comparison of LSTM and random forest model performance. 

Metric Random Forest [7] LSTM Interpretation 

R2 0.9995 1.000 The LSTM model explains nearly all the 

variance in the temporal deformation data 

with higher precision. 

MSE 0.1098 0.104 The slightly lower mean squared error of 

the LSTM model indicates better predictive 

accuracy. 

RMSE 0.3314 0.322 A lower RMSE value suggests smaller 

differences between predicted and observed 

deformation values. 

KGE 0.9986 0.9980 Both models exhibit excellent stability, but 

the LSTM shows more consistent temporal 

stability over long time sequences. 

 

3.3. Spatial analysis of ground surface deformation. 

Spatial analysis was conducted to illustrate the distribution of ground surface deformation in 

North Jakarta, based on the modeling results of the Long Short-Term Memory (LSTM) 

network applied to PS-InSAR data that had been temporally regularized at a fixed 11-day 

interval. The visualization of the mapping results is presented in Figure 2, which shows the 

distribution of deformation observation points during the 2017–2021 period. In general, the 

spatial pattern indicates that the northern coastal areas of Jakarta, particularly Tanjung Priok, 

Cilincing, and Pantai Indah Kapuk, experienced the most significant land subsidence. Based 

on the cumulative deformation values produced by the model, these areas exhibited subsidence 

exceeding −30 mm throughout the observation period. This phenomenon is consistent with 

previous studies linking significant subsidence in coastal zones to intensive urbanization, 

excessive groundwater extraction, and weak geotechnical conditions. In contrast, areas located 

further south, such as central Sunter and Kemayoran, displayed more stable deformation 

values, with average subsidence below −10 mm. This relative stability is likely influenced by 

denser soil composition and lower structural loading in these regions. The pattern demonstrates 

a north south deformation gradient, where subsidence rates tend to increase toward the 

coastline. 

The LSTM model effectively represented this spatial variation, producing smoother and 

more continuous deformation maps compared to ensemble learning–based approaches such as 

Random Forest. With uniform temporal intervals, the model successfully reduced spatial 

fluctuations caused by irregular acquisition times in the raw PS-InSAR data. Furthermore, the 

distribution of predicted deformation points shows that areas with higher subsidence rates (red 

points) are densely concentrated along the coastline, while blue-dominated regions in central 

and southern North Jakarta indicate relatively stable ground conditions. Overall, these results 

reinforce the finding that North Jakarta remains an active subsidence zone, with a continuing 

downward trend through 2021. The combination of temporal regularization and the LSTM 
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model proved effective in capturing long-term and complex deformation patterns, while also 

improving the spatial consistency of the ground deformation mapping results. 

 

 
Figure 5. Spatial distribution of cumulative ground deformation in North Jakarta from 2017 to 2021 based on 

LSTM model prediction. Red areas indicate significant subsidence exceeding −30 mm, while blue areas 

represent stable zones with deformation less than −10 mm. 

 

Despite the strong performance achieved by the proposed LSTM model, several 

limitations should be acknowledged to provide a balanced interpretation of the results. The use 

of a fixed 11-day temporal interpolation may introduce mild smoothing effects, potentially 

reducing the model’s sensitivity to short-term deformation anomalies that occur between 

satellite acquisitions. In addition, because the model was trained exclusively on deformation 

characteristics unique to DKI Jakarta where subsidence is driven largely by groundwater 

extraction and coastal sediment compaction its generalisation to regions with different 

geological or anthropogenic conditions remains uncertain. The exceptionally high evaluation 

metrics may also reflect the high regularity of the interpolated time series, suggesting that 

future work should explore model robustness under noisier or irregular temporal inputs. 

Addressing these aspects through alternative interpolation methods, cross-regional testing, or 

the inclusion of additional environmental variables would further strengthen the applicability 

of the framework. 

4. Conclusions 

This study successfully developed a temporal analysis model of land subsidence in DKI Jakarta 

using a Long Short-Term Memory (LSTM) approach based on PS-InSAR data from the 2017–

2021 period. Through the application of temporal regularization with a fixed 11-day interval, 

the deformation data became more consistent and homogeneous for time-series modeling. The 

LSTM model, consisting of three hidden layers, demonstrated excellent performance with 

values of R² = 1.000, MSE = 0.1098 mm, RMSE = 0.3314 mm, and KGE = 0.998, indicating 

that the predicted results were nearly identical to the actual observations. Compared to previous 

studies that employed the Random Forest algorithm, the LSTM model produced more 

temporally valid results by maintaining the chronological order of the data and avoiding data 

leakage. Spatially, the northern part of Jakarta particularly Cengkareng, Tanjung Priok, and 

Pantai Indah Kapuk, exhibited significant land subsidence exceeding −30 mm, while the 

southern areas, such as Jagakarsa and Kebayoran Baru, remained relatively stable with 
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subsidence below −5 mm. These findings are consistent with the geotechnical characteristics 

and urbanization pressure observed in the coastal regions. Overall, the LSTM-based PS-InSAR 

model effectively represented ground deformation patterns with high accuracy and stability, 

both temporally and spatially. The results of this research provide a scientific foundation for 

the development of AI-based subsidence monitoring systems and support risk mitigation efforts 

for land subsidence in high-risk urban areas such as DKI Jakarta. Beyond its scientific 

contribution, the findings of this study hold significant relevance for the development of Green 

Intelligent Systems in urban environmental management. Accurate deformation forecasting 

enables automated early-warning mechanisms, supports sustainable groundwater extraction 

policies, and improves the resilience of critical infrastructure in coastal megacities. By 

integrating PS-InSAR observations with deep learning–based temporal modeling, this research 

contributes to intelligent, environmentally aware monitoring systems that enhance climate 

adaptation strategies and promote sustainable land and water resource governance in DKI 

Jakarta. 
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