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ABSTRACT: This research investigated temporal patterns of land subsidence in DKI Jakarta
by applying a Long Short-Term Memory (LSTM) model to deformation measurements derived
from Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) observations
acquired between 2017 and 2021. Because the original PS-INSAR time series was characterized
by uneven acquisition intervals, the deformation records were first resampled into a uniform
11-day sequence to obtain a consistent temporal structure for modeling. Preprocessing steps,
comprising outlier handling, temporal resampling, and feature normalization, were performed
to ensure that the model could capture deformation behavior reliably. The LSTM architecture
employed three stacked recurrent layers and was trained using the Adam optimizer with
Smooth L1 Loss and an early-stopping strategy. Model evaluation demonstrated excellent
agreement between predicted and observed deformation, yielding R2 = 1.000, MSE = 0.104,
RMSE =0.322 mm, and KGE = 0.998. Compared with a previously developed Random Forest
model (R2=0.9995, RMSE = 0.3314 mm), the LSTM approach exhibited more stable temporal
learning and was better suited for long-horizon deformation forecasting. Spatial analysis
revealed that northern Jakarta, particularly Cengkareng, Tanjung Priok, and Pantai Indah
Kapuk, continued to experience the greatest cumulative subsidence (> —30 mm), whereas areas
in the south, such as Jagakarsa and Kebayoran Baru, showed minimal deformation (< —5 mm),
aligning with known geological and anthropogenic conditions. Overall, integrating PS-INSAR
time series with an LSTM framework provided a more coherent and temporally consistent
method for characterizing subsidence behavior in Jakarta. The outcomes of this study offered
a scientific basis for developing intelligent monitoring tools to support mitigation efforts and
sustainable urban planning in regions affected by land subsidence.

KEYWORDS: Land subsidence; Jakarta; PS-INSAR; LSTM; deep learning; temporal
prediction
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1. Introduction

Land subsidence is one of the most serious geotechnical hazards faced by many major cities
worldwide, particularly in Asian regions experiencing rapid urbanization and excessive
groundwater extraction [1, 2]. This phenomenon is defined as a gradual decrease in ground
surface elevation caused by natural sediment compaction and anthropogenic activities such as
deep groundwater pumping and heavy building loads [3]. In Indonesia, land subsidence has
become a major environmental issue in several large cities, including Jakarta, Bandung, and
Semarang, resulting in infrastructure damage, increased frequency of tidal flooding, and
seawater intrusion into inland areas [4]. According to Abidin et al., land subsidence in Jakarta
has occurred for more than four decades, with rates reaching 3—10 cm per year, particularly in
northern coastal areas such as Cengkareng, Penjaringan, and Tanjung Priok. The main factors
driving subsidence are deep groundwater extraction and the presence of young alluvial
sediments, which have caused tilted buildings, road cracking, and reduced drainage
effectiveness. Research by Sarah [2] and Bott et al. [1] indicated that more than 70% of urban
land subsidence in Indonesia is anthropogenic, although most communities remain unaware
that it is the main cause of increasing tidal flooding.

The development of remote sensing technology based on Interferometric Synthetic
Aperture Radar (InNSAR) has enabled accurate spatial and temporal mapping of land
deformation. Sidig et al. [4] utilized Sentinel-1 SAR data from 2017-2023 to identify
deformation rates ranging from 60—200 mm/year across major cities in Java Island. Widodo et
al. [5] analyzed land subsidence in DKI Jakarta using the Persistent Scatterer Interferometric
Synthetic Aperture Radar (PS-InNSAR) method with TerraSAR-X data from 2017-2021,
showing that Pantai Indah Kapuk and Kembangan experienced significant cumulative
subsidence of approximately 9.85 cm and 5.63 cm, respectively, primarily due to excessive
groundwater extraction and alluvial sediment compaction. These studies demonstrated the
effectiveness of PS-InSAR for monitoring temporal and spatial ground deformation in densely
populated urban areas.

Several studies have applied machine learning to model and predict land subsidence
based on INSAR data. Hakim et al. [6] developed a Functional and Meta-Ensemble Machine
Learning model (RF, GBT, and SVM) with an AUC of 0.94; however, the model was spatially
static and did not represent temporal dynamics. Hidayah et al. [7] employed the Random Forest
algorithm for temporal prediction, but the perfect accuracy (R? = 1.000) suggested temporal
data leakage caused by random splitting without considering chronological order, allowing the
model to indirectly access future data during training and producing unrealistically high
performance.

To overcome these limitations, deep learning approaches have been developed for time-
series-based ground deformation analysis. Li et al. [8] applied Long Short-Term Memory
(LSTM) models to predict land subsidence in the Beijing Plain using InSAR and
hydrogeological data from 2011-2015, achieving an RMSE of 14.41 mm and effectively
capturing nonlinear relationships and long-term temporal patterns. Liu and Zhang [9]
integrated SBAS-INSAR with an Attention-based LSTM (AT-LSTM) in the Pingshuo mining
area, China (2019-2022), obtaining correlation >0.97 and MAE of 0.73 mm, demonstrating
that attention mechanisms improved prediction accuracy and stability. More recently, Soni et
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al. [12] showed that improved LSTM architectures further enhanced accuracy and stability,
achieving RMSE below 5 mm/year in mining-induced subsidence studies.

Although LSTM and its derivatives have proven effective for modeling temporal
dynamics of land subsidence, their application in highly anthropogenic urban areas such as
DKI Jakarta remains limited. This study builds upon Hidayah et al. [7] by addressing the data
leakage problem through chronological dataset splitting and implementing automatic temporal
interpolation every 11 days to produce consistent, fixed-frequency data. This approach allows
the LSTM model to realistically learn ground deformation patterns without temporal
information leakage, resulting in more stable and replicable predictions. Additionally, fixed-
interval temporal regularization was introduced to eliminate long observational gaps and
produce a continuous deformation time series suitable for deep temporal learning. These
refinements enable the model to learn smoother deformation trajectories and avoid unrealistic
fluctuations, representing a substantial improvement in modeling accuracy and temporal
stability compared to previous approaches.

This study also addresses challenges posed by highly heterogeneous and
anthropogenically driven deformation patterns in megacities such as Jakarta. While prior work
focused on mining regions or hydrogeologically uniform plains, the present study demonstrates
that LSTM remains stable and predictive even under complex urban conditions characterized
by strong spatial variability, multiple triggering mechanisms, and dense built-up areas.
Furthermore, the research leverages a larger PS-InNSAR dataset in both spatial density and
temporal coverage than most prior deep learning studies, enabling more reliable modeling of
long-term deformation behavior.

In the broader context of Green Intelligent Systems, accurate and continuous subsidence
prediction supports environmentally sustainable urban management. Time-series forecasting
enables intelligent monitoring systems to detect early signs of land instability, optimize
groundwater extraction policies, and guide adaptive infrastructure planning in sinking coastal
regions. By integrating PS-INSAR observations with deep learning-based temporal modeling,
this research contributes to data-driven decision-support systems that enhance climate
resilience, reduce disaster risk, and promote sustainable land and water resource governance in
rapidly urbanizing megacities such as Jakarta. Consequently, this study provides a more
reliable computational approach for temporal analysis of land subsidence in DKI Jakarta,
serving as a scientific foundation for subsidence risk mitigation and urban groundwater
management.

2. Materials and Methods

In general, the stages of this research include the preprocessing of PS-InSAR data, temporal
interpolation, data normalization, LSTM model training, and result evaluation. The overall
methodological workflow is illustrated in Figure 1 below.
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Figure 1. Research methodology workflow.

2.1. Dataset.

The dataset used in this study was generated from ground deformation processing using the
Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-INSAR) method developed
by Widodo et al. [5]. TerraSAR-X images acquired between 20 October 2017 and 12 June 2021
were processed using SARPROZ software (version 7.3), producing deformation measurements
at approximately 91,000 stable points distributed across all administrative regions of DKI
Jakarta.

PS-InSAR is a multitemporal radar interferometry technique that tracks phase changes
in radar returns from long-lasting reflective objects, such as buildings, paved surfaces, and
other urban structures, to estimate ground motion with millimeter-level precision. Because
these objects remain stable over time, they act as persistent scatterers, enabling continuous
monitoring of subtle elevation changes.

The dataset included several key parameters: geographic coordinates (LAT, LON),
elevations (HEIGHT and HEIGHT WRT DEM), average deformation velocity (VEL) and its
standard deviation (SIGMA VEL), cumulative deformation (CUMUL.DISP.), and coherence
(COHER). Together, these variables revealed spatial patterns of land subsidence across Jakarta.
Consistent with previous studies, the largest subsidence occurred in the northern and western
coastal districts, such as Penjaringan, Cengkareng, and Kalideres, whereas the southern part of
the city remained comparatively stable.

167



Green Intelligent Systems and Applications 5(2), 2025, 164—180

Two versions of the time-series data were used in this research. The first consisted of the
original PS-InNSAR output, which contained irregular temporal intervals similar to those
analyzed by Hidayah et al. [7]. The second was a temporally regularized version developed in
this study, in which the deformation series was interpolated to a uniform 11-day interval. This
interpolation aligned the data with the nominal revisit time of Sentinel-1A in equatorial regions
and minimized the effects of long observational gaps (up to 88 days). Comparing the two
datasets allowed us to assess how temporal irregularity influenced the performance and
stability of the LSTM prediction model.

2.2. Pre-Processing Dataset.

The preprocessing stage was conducted to ensure that the PS-INSAR dataset was clean,
consistent, and suitable for temporal interpolation and LSTM training. The process included
duplicate checking, outlier reduction, handling of missing temporal values, and preparation of
the data for the resampling stage.

2.2.1. Data Duplication Checking and Removal.

An initial check confirmed that no duplicate rows existed in the dataset. However, several
temporal fields with the suffix “.1” (e.g., 20171020 HH and 20171020 HH.1) appeared as
duplicated columns generated during SARPROZ export. These columns contained identical
deformation values and were removed to avoid redundancy. After this step, 45 valid fields and
91,987 unique observation points remained.

2.2.2. Outlier Detection and Treatment.

To improve numerical stability, mild outliers in static attributes (HEIGHT, VEL,
CUMUL.DISP., COHER, etc.) were filtered using interquartile range (IQR)-based trimming,
whereas extreme temporal spikes were reduced using a Z-score threshold. Instead of deleting
records, outlier values were replaced with the median of each field to preserve spatial coverage.

2.2.3. Handling Missing Values

Some deformation dates contained missing values due to radar acquisition gaps or low
coherence. These gaps were filled using linear interpolation along the temporal axis so that
each point retained a continuous time series prior to the resampling stage.

2.2.4. Temporal Interpolation

PS-InSAR acquisition dates are irregular and contain long temporal gaps (11-88 days). Such
uneven sampling may introduce biases in temporal learning for sequence models. To address
this problem, the cleaned deformation series were resampled to a fixed 11-day interval,
corresponding to the nominal revisit time of Sentinel-1A in equatorial regions.
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Figure 2. Workflow diagram of the PS-INSAR temporal interpolation process.

After cleaning and preparing the temporal fields, the deformation dates were converted
into a complete 11-day calendar, and missing timestamps were filled using linear interpolation.
This transformation produced a uniform set of 122 observations from the original 29
acquisition dates. The regularised dataset provides a more stable temporal input for the LSTM
model and removes the long temporal gaps that affected the Random Forest approach in
Hidayah et al. [7]. A summary of the resampling steps is presented in Table 1, and the
mathematical interpolation formulation is shown in Equation (1). These details are provided to
clarify the temporal regularisation process while keeping the main description concise.

Table 1. Step-by-step application algorithm of PS-InSAR temporal interpolation.

Algorithm 1 — Temporal Interpolation (11-day interval)
Input: PS-InNSAR time-series with irregular sampling
Result: Regularized displacement time-series (At = 11 days)
df all < copy(df)
info_cols « ['ID', 'LAT', 'LON', 'HEIGHT', 'HEIGHT WRT DEM!,

'SIGMA HEIGHT", 'VEL', 'SIGMA VEL', 'SEASONAL',

'CUMUL.DISP.',"COHER', 'SVET", 'LVET", 'IN', 'FIN’,
date cols_df « df all.drop(columns = info_cols)
info_df < df all[info_cols].set index('ID') date cols df.columns «—
to_datetime(date_cols_df.columns.str.replace(’_HH', "),

format = '%Y%m%d', errors = 'coerce’)
full_date range < date range(start = min(date_cols_df.columns),
end = max(date_cols_df.columns),
freq ='11D")

reindexed df «<— date cols_df.reindex(columns = full _date range)
interpolated _dates «— reindexed_df.interpolate(method = 'linear’, axis =
1)
final df < concat([info_df, interpolated dates], axis = 1)
df « copy(final df)
return final_df

For missing timestamps, linear interpolation was applied along the temporal axis using the
formula:
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D(tis)) = D(ti-) @

D(t;) = D(ti-q) + (ti — ti—1)

tiv1 — ti—1
This equation estimates the deformation value at time t; under the assumption that
displacement evolves linearly between adjacent valid observations.

The selection of linear interpolation was based on its documented suitability for INSAR
deformation time-series, where ground motion typically evolves gradually and exhibits quasi-
linear behaviour over short temporal intervals. Linear interpolation avoids the oscillatory
artefacts that may arise from higher-order methods such as spline interpolation, which can
artificially amplify deformation signals between observation dates. In contrast, Kalman
filtering and other state-space estimators require explicit dynamical models or noise parameters
that are often unavailable for PS-InNSAR deformation, especially in heterogeneous urban
environments. Machine-learning-based temporal gap filling methods were not adopted because
they require additional training labels and may introduce model-dependent biases. Several
recent studies have also applied linear interpolation for temporal regularisation of INSAR time
series due to its stability, simplicity, and ability to preserve large-scale deformation trends
without overfitting [8] [12]. For these reasons, linear interpolation provides a balanced and
physically consistent approach for reconstructing missing PS-InSAR observations in this study.

In addition to the interpolation procedure, it is important to evaluate how the temporal
restructuring changes the characteristics of the PS-InNSAR dataset. The resampling process not
only increases the number of deformation timestamps but also alters the temporal density,
continuity, and suitability of the data for sequence-based learning. By examining these
structural differences, we can better understand why the regularised dataset produces more
stable behaviour in the LSTM model compared with the irregular time series used in the earlier
study. Moreover, understanding these temporal differences is essential because they directly
influence how the model interprets long-term deformation trends and how stable its predictions
become under different sampling conditions. A summary of these differences is presented in
Table 2.

Table 2. Comparison between the dataset of Hidayah et al. [7] vs and this study.

Parameter Hidayah et al. This Study
Data Period 20 Okt 2017 — 12 Jun 2021 20 Okt 2017 — 12 Jun 2021
Number of Dates 29 Dates 122 Dates
Temporal Interval Irregular (11-88 days) Regular (11 days)
Examples of Gaos 14 Apr 2018 — 11 Jul 2018 (87 days) None

12 Des 2018 — 10 Mar 2019 (88 days)
Temporal Consistency Not Continuous Continuous and regular
Model Random Forest LSTM

2.3. Model Long Short-Term Memory (LSTM).

The LSTM architecture was employed to model temporal patterns of ground deformation
extracted from the regularised PS-InSAR time series. LSTM networks belong to the Recurrent
Neural Network (RNN) family and are specifically designed to capture long-term dependencies
through memory cells and gated operations. This capability makes LSTM suitable for
representing gradual subsidence trends and nonlinear temporal behaviour. The input sequences
were generated using a sliding-window approach, where 12 consecutive deformation values
(132 days) were used to predict the next observation. Each window also included an auxiliary
At feature to preserve temporal spacing information. All features were standardised using the
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mean and standard deviation computed from the training portion of the data. An 80-20
chronological split was used to prevent temporal leakage, ensuring that future dates were never
included during model training.

The model consisted of three LSTM layers with 256 hidden units per layer, followed by
a fully connected output layer that produced a single displacement prediction. Dropout (0.3)
was applied between layers for regularisation. The network was trained using the Adam
optimiser with a learning rate of 5x10™* and Smooth L1 Loss for robustness against outliers.
Training was conducted for up to 80 epochs with early stopping based on validation loss. A
ReduceLROnPlateau scheduler was used to reduce the learning rate when improvement
stagnated. A high-level summary of the training workflow including window generation,
normalisation, forward propagation, validation, and checkpointing is presented in Algorithm
3.

Table 3. Step-by-step algorithm of LSTM model training.

Algorithm 2 — LSTM Model Training Procedure
Input: Regularized PS-InSAR time-series dataset (At =11 days)
Result: Trained LSTM model for displacement prediction
seed «— 42
device «— "cuda" if available else "cpu"
X tr,y tr, td tr < make windows(df ff, dates, seq len=12, ...)
X te,y te, td te < make windows(df ff, dates, seq len=12, ...)
W, o «— mean(X_tr), std(X_tr)
Xtrn—Xtr—p/oc
ytrn—(ytr—py)/ocy
model < LSTMRegressor(input_size=2, hidden size=256, num_layers=3, dropout=0.3)
optimizer < Adam(lr=5e-4, weight_decay=1e-5)
loss fn «— SmoothL1Loss()
scheduler «— ReduceLROnPlateau(factor=0.5, patience=5)
for epoch in [1, ..., 80] do:
train_loss < compute loss(model, train_loader)
val_loss «— compute loss(model, test loader)
scheduler.step(val_loss)
if val_loss < best_loss — &: save_state(model)
else: bad_epochs +=1
if bad_epochs > patience: stop_training()
save(model state, “best lstm model.pth™)

Before presenting the architectural specifications, it is important to summarise the key
training components that define how the model learns temporal deformation patterns. These
components include the number of layers, activation functions, optimiser settings, batch sizes,
and early-stopping criteria, all of which influence training stability and convergence behaviour.
The main architectural and optimisation parameters used in this study are listed in Table [4].

Table 4. LSTM model specifications and training parameters.

Component Specification

Implementation Platform PyTorch

Architecture 3 Hidden Layer + 1 Fully Connected Output
Layer

Hidden Size 256 Neurons per Layer

Dropout 0.3

Activation Function tanh

Loss Function SmoothlLoss

Optimizer Adam

Learning Rate 0.0005

Batch Size 128 (train), 512 (test)

Maximum Epoch 80

Early Stopping Enable

Input Feature Regularized temporal deformation values (11-
day interval)

Ouput Cumulative deformation (CUMUL.DISP.)
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In addition to the main training configuration, a small exploratory hyperparameter tuning
experiment was conducted to evaluate the sensitivity of the LSTM architecture to variations in
hidden size, number of layers, dropout rate, and learning rate. These tuning trials were
intentionally limited to short training runs (10 epochs) to identify parameter combinations that
demonstrated stable behaviour and promising early-stage validation performance. This
exploratory tuning served as supplementary analysis and did not replace the main architecture
used in full training.

The exploratory results showed that several alternative configurations achieved lower
validation loss during short-run evaluations. For example, a two-layer LSTM with 256 hidden
units and a dropout rate of 0.2 produced the lowest validation loss among the tested models,
while a three-layer architecture with 128 hidden units also performed competitively. These
findings suggest that other architectures may also model deformation patterns effectively;
however, because these experiments were conducted on short iterations, they do not reflect full
convergence of the models.

Model performance in LSTM networks is sensitive to architectural choices such as
hidden-size, depth, dropout, and learning rate. Therefore, a small exploratory hyperparameter
search was conducted to compare multiple candidate configurations. Although a 128-unit, 3-
layer model yielded slightly lower short-run validation loss, the 256-unit, 3-layer configuration
was retained for full training because it demonstrated more stable convergence on the complete
dataset. This decision aligns with prior research on InSAR-based deformation modelling,
where deeper LSTM structures were found to be more robust to noise and long time series.

Other recurrent architectures such as GRU, bidirectional LSTM, and attention-based
models were also considered during the model design phase; however, these alternatives were
not implemented due to the substantial computational cost required to train them on the full
PS-InNSAR dataset, which contains more than 91,000 spatial points and 122 temporal
observations. Prior studies have shown that the performance gains of these architectures are
typically more pronounced when multi-source predictors (e.g., hydrological or environmental
variables) are available, whereas the present study focuses on a univariate deformation time
series. For this reason, the exploratory search was restricted to standard LSTM variants, which
provided a strong balance between accuracy, model stability, and computational feasibility for
large-scale deformation modelling.

2.4. Evalution.

The evaluation stage was conducted to assess the performance of the Long Short-Term
Memory (LSTM) model in predicting ground surface deformation based on time-series data
derived from PS-InSAR processing. This evaluation aimed to ensure that the model was not
only capable of fitting the training data but also exhibited strong generalization ability when
applied to new data (testing dataset). The evaluation process was carried out after the model
had been fully trained and the best model checkpoint was obtained through the early stopping
mechanism. Testing was performed by comparing the predicted deformation values against the
actual observed values during the testing period (May 10 — June 12, 2021). To measure model
performance, four primary statistical metrics were used: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Coefficient of Determination (R?), and Kling—Gupta Efficiency
(KGE). These four metrics were selected because, collectively, they provide a comprehensive
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assessment of the model’s accuracy, stability, and temporal pattern consistency in deformation
prediction.

2.4.1. Root Mean Square Error (RMSE).

Root Mean Square Error (RMSE) is used to measure the average squared difference between
the predicted and actual values. The smaller the RMSE value, the higher the model’s accuracy.
This metric is sensitive to large errors (outliers), making it effective for evaluating the precision
of extreme deformation predictions.

1 R (2)
RMSE = [, - 5)°
where y; represents the actual deformation value and y, denotes the model-predicted value.
Recent studies highlight that RMSE remains an important metric in the evaluation of numerical

models; however, it should be used in conjunction with other metrics, as the error distribution
may influence the interpretation of results.

2.4.2. Mean Absolute Error (MAE).

Mean Absolute Error (MAE) represents the average magnitude of absolute errors between the
predicted and observed values, regardless of the direction of deviation. A lower MAE value
indicates that the model’s predictions have a smaller average error.

1 ~
MAE = =31 |yi = 3| (3)

Unlike RMSE, MAE is not highly sensitive to extreme values, thus providing a more stable
view of the model’s overall performance.

2.4.3. Coefficient of Determination (R2).

The coefficient of determination (R2) indicates the extent to which the model can explain the
variability of the actual data. The R2 value ranges from 0 to 1, where values closer to 1 indicate
that the model can explain almost all variations in the observed data.

S 1T N )
where y represents the mean value of the actual observations. A high R? value indicates that
the model has strong predictive capability and a strong relationship with the observed data.

2.4.3. Kling-Gupta Efficiency (KGE).

The Kling—Gupta Efficiency (KGE) is used to evaluate the temporal pattern agreement between
the predicted and observed results. In addition to considering the correlation coefficient (r), it
also accounts for the mean bias and the variability ratio between datasets. This metric is
particularly suitable for hydrological or land deformation modeling, as it effectively assesses
the dynamic similarity of temporal patterns.
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where r is the Pearson correlation coefficient between the predictions (x) and observations (y)
, Uy and p,, are the mean values of the predictions and observations, respectively; and o, and
a, represent the standard deviations of the predictions and observations.

3. Result and Discussion
3.1. Preprocessing dan interpolasi temporal.

The preprocessing and temporal regularization processes were conducted to ensure the
consistency of observation time intervals in the Persistent Scatterer Interferometric Synthetic
Aperture Radar (PS-InSAR) data. This dataset served as the foundation for analyzing ground
surface deformation in the DKI Jakarta area. The preprocessing stage included data duplication
removal, handling of missing values, and outlier detection. After the cleaning stage was
completed, temporal regularization was applied so that all observation points had a uniform
time interval of 11 days, consistent with the revisit period of the Sentinel-1A satellite. The
cleaned dataset consisted of 91,987 observation points, covering the period from January 2017
to December 2021. Before regularization, the deformation time series exhibited irregular
observation intervals, with 29 observation dates varying between 11 and 88 days. This
irregularity could potentially cause gradient imbalance during the learning process of time-
series models such as LSTM.

After applying linear-based temporal interpolation with a fixed interval of At =11 days,
the number of observation timestamps increased to 122. This adjustment made the data more
homogeneous and temporally continuous, allowing deformation patterns to be tracked more
smoothly and consistently across observation periods. The comparison between deformation
patterns before and after temporal regularization is illustrated in Figure 3.

Comparison of PS-INSAR Deformation Time Series
(ID: 1001)

04 —e— Before Reqularization
—— After Regularization (11-Day Interval)

Ground Deformation (mm)
hR iR
w o

|
L]
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Figure 3. Comparison of PS-InSAR deformation time series before and after temporal regularization (fixed 11-
day interval).
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As shown in Figure 3, the data before regularization (red line) exhibit irregular intervals
between acquisition dates, with several inconsistent temporal gaps. After applying temporal
regularization (blue line), the cumulative deformation appears smoother and more continuous
while following the same subsidence trend. These results indicate that the interpolation process
successfully preserved the overall deformation trend without introducing value distortion,
while also improving the temporal stability of the dataset. To evaluate the consistency and
temporal correlation between variables after regularization, a Pearson correlation matrix
analysis was performed. The results of this analysis are presented in Figure 4.

Correlation Among Key Non-Temporal Variables
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Figure 4. Correlation heatmap of the main non-temporal variables from the PS-InSAR dataset.

Correlation analysis was conducted to understand the relationships among variables
derived from PS-InSAR processing before being used in the time-series modeling with LSTM.
The correlation was calculated using the Pearson correlation coefficient (r) to assess the
strength of linear relationships between non-temporal variable pairs, such as HEIGHT, VEL,
COHER, and CUMUL.DISP. The correlation coefficient ranges from —1 to +1, where values
approaching +1 indicate a strong positive relationship, while values near —1 indicate a strong
negative relationship. Figure X presents the correlation matrix among the main non-temporal
variables.

In general, the correlation patterns show significant linear relationships among several
variable pairs directly associated with ground deformation dynamics. The VEL (Velocity)
variable exhibits a strong positive correlation with CUMUL.DISP (Cumulative Displacement),
with r=0.99r \approx 0.99r~0.99, indicating that an increase in deformation velocity
corresponds directly to a greater cumulative displacement during the observation period. This
correlation reinforces that deformation velocity is a major driving factor behind the total
vertical displacement detected by radar. Meanwhile, a high correlation was also observed
between SIGMA HEIGHT and SVET (r=0.82r = 0.82r=0.82), suggesting that variations in
height uncertainty are closely related to the spatial distribution of phase velocity in the
observation area. The negative correlation between COHER and STDEV (r=—0.83r =
—0.83r=—0.83) indicates that higher coherence values correspond to smaller standard deviation
values of deformation, reflecting good radar signal stability at those observation points.
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Conversely, variables such as HEIGHT WRT DEM and SIGMA VEL showed low correlations
with other parameters (< 0.3), implying that their contributions are more supplementary in
explaining spatial variability rather than temporal dynamics.

These findings suggest that most non-temporal variables are complementary rather than
redundant, allowing subsequent regularization and modeling processes to incorporate
combinations of these variables without a high risk of multicollinearity. Overall, the correlation
results confirm that VEL, CUMUL.DISP, and COHER are the key variables most
representative of ground surface deformation within the study area. The positive and negative
inter-variable relationships also indicate strong radar signal stability and adequate PS-InSAR
data quality for use in LSTM model training.

3.2. LSTM model training results.

The Long Short-Term Memory (LSTM) model was trained using the PS-InNSAR deformation
data that had undergone temporal regularization with a fixed 11-day interval. The training
aimed to learn the temporal relationships of ground surface deformation and generate
continuous predictions of cumulative deformation. The dataset was chronologically divided
into 80% for training and 20% for testing to prevent data leakage. This time-based split ensured
that the model learned only from past data to predict future deformation. Each sequence
window consisted of 12 consecutive time steps (132 days) used to predict the deformation value
at the next time step.

Training was conducted for a maximum of 80 epochs with a batch size of 128. The
Smooth L1 Loss (Huber Loss) function was employed to balance sensitivity to outliers while
maintaining numerical stability. Optimization was performed using the Adam optimizer with
an initial learning rate of 0.0005 and a weight decay of 1le-5. A learning rate scheduler was
applied to automatically reduce the learning rate when the validation loss failed to improve for
five consecutive epochs, while early stopping was implemented with a patience of 15 epochs.

Based on the training results, early stopping was triggered at epoch 42, when no
significant improvement in validation loss was observed. The training loss decreased
consistently from 0.00053 to 0.00021, while the validation loss fluctuated within the range of
0.0004-0.0006, showing a downward trend toward the end of training. This trend indicates that
the model achieved a proper balance between learning and generalization, with no signs of
overfitting.

Overall, the final evaluation results demonstrated that the LSTM model achieved
excellent predictive performance. The values of R?2 = 1.000, RMSE = 0.322, and KGE = 0.9980
indicate that the model successfully captured temporal relationships with high accuracy and
strong prediction stability. The model’s performance was compared with that of Hidayah et al.
[7], who utilized a Random Forest algorithm. Based on the final tuning results from that study
(see Table 4), the LSTM model exhibited a notable performance improvement, particularly in
temporal stability and generalization capability. The LSTM RMSE (0.322) was lower than that
of the Random Forest model after tuning (0.3314), and its KGE (0.9980) was slightly higher
than the previous model (0.9986). Although the numerical improvement appears minor, the
temporal stability achieved by the LSTM model was significantly better, as it can capture
sequential time dependencies that ensemble-based models such as Random Forest cannot
effectively learn.
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Based on Table 5, the LSTM model demonstrates performance that is comparable to, and
slightly better than, the Random Forest model after parameter tuning. The main advantage of
the LSTM lies in its ability to preserve sequential temporal patterns and capture nonlinear
relationships across time steps, which cannot be effectively handled by ensemble-based
approaches. This makes the LSTM model more suitable for analyzing time-series—based
ground deformation data derived from PS-InSAR observations.

Table 5. Comparison of LSTM and random forest model performance.
Metric Random Forest [7] LSTM Interpretation
R? 0.9995 1.000 The LSTM model explains nearly all the
variance in the temporal deformation data
with higher precision.

MSE 0.1098 0.104 The slightly lower mean squared error of
the LSTM maodel indicates better predictive
accuracy.

RMSE 0.3314 0.322 A lower RMSE value suggests smaller

differences between predicted and observed
deformation values.

KGE 0.9986 0.9980 Both models exhibit excellent stability, but
the LSTM shows more consistent temporal
stability over long time sequences.

3.3. Spatial analysis of ground surface deformation.

Spatial analysis was conducted to illustrate the distribution of ground surface deformation in
North Jakarta, based on the modeling results of the Long Short-Term Memory (LSTM)
network applied to PS-InSAR data that had been temporally regularized at a fixed 11-day
interval. The visualization of the mapping results is presented in Figure 2, which shows the
distribution of deformation observation points during the 2017-2021 period. In general, the
spatial pattern indicates that the northern coastal areas of Jakarta, particularly Tanjung Priok,
Cilincing, and Pantai Indah Kapuk, experienced the most significant land subsidence. Based
on the cumulative deformation values produced by the model, these areas exhibited subsidence
exceeding —30 mm throughout the observation period. This phenomenon is consistent with
previous studies linking significant subsidence in coastal zones to intensive urbanization,
excessive groundwater extraction, and weak geotechnical conditions. In contrast, areas located
further south, such as central Sunter and Kemayoran, displayed more stable deformation
values, with average subsidence below —10 mm. This relative stability is likely influenced by
denser soil composition and lower structural loading in these regions. The pattern demonstrates
a north south deformation gradient, where subsidence rates tend to increase toward the
coastline.

The LSTM model effectively represented this spatial variation, producing smoother and
more continuous deformation maps compared to ensemble learning—based approaches such as
Random Forest. With uniform temporal intervals, the model successfully reduced spatial
fluctuations caused by irregular acquisition times in the raw PS-InSAR data. Furthermore, the
distribution of predicted deformation points shows that areas with higher subsidence rates (red
points) are densely concentrated along the coastline, while blue-dominated regions in central
and southern North Jakarta indicate relatively stable ground conditions. Overall, these results
reinforce the finding that North Jakarta remains an active subsidence zone, with a continuing
downward trend through 2021. The combination of temporal regularization and the LSTM
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model proved effective in capturing long-term and complex deformation patterns, while also
improving the spatial consistency of the ground deformation mapping results.
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LSTM model prediction. Red areas indicate significant subsidence exceeding —30 mm, while blue areas
represent stable zones with deformation less than —10 mm.

Despite the strong performance achieved by the proposed LSTM model, several
limitations should be acknowledged to provide a balanced interpretation of the results. The use
of a fixed 11-day temporal interpolation may introduce mild smoothing effects, potentially
reducing the model’s sensitivity to short-term deformation anomalies that occur between
satellite acquisitions. In addition, because the model was trained exclusively on deformation
characteristics unique to DKI Jakarta where subsidence is driven largely by groundwater
extraction and coastal sediment compaction its generalisation to regions with different
geological or anthropogenic conditions remains uncertain. The exceptionally high evaluation
metrics may also reflect the high regularity of the interpolated time series, suggesting that
future work should explore model robustness under noisier or irregular temporal inputs.
Addressing these aspects through alternative interpolation methods, cross-regional testing, or
the inclusion of additional environmental variables would further strengthen the applicability
of the framework.

4. Conclusions

This study successfully developed a temporal analysis model of land subsidence in DKI Jakarta
using a Long Short-Term Memory (LSTM) approach based on PS-InSAR data from the 2017—
2021 period. Through the application of temporal regularization with a fixed 11-day interval,
the deformation data became more consistent and homogeneous for time-series modeling. The
LSTM model, consisting of three hidden layers, demonstrated excellent performance with
values of Rz = 1.000, MSE = 0.1098 mm, RMSE = 0.3314 mm, and KGE = 0.998, indicating
that the predicted results were nearly identical to the actual observations. Compared to previous
studies that employed the Random Forest algorithm, the LSTM model produced more
temporally valid results by maintaining the chronological order of the data and avoiding data
leakage. Spatially, the northern part of Jakarta particularly Cengkareng, Tanjung Priok, and
Pantai Indah Kapuk, exhibited significant land subsidence exceeding —30 mm, while the
southern areas, such as Jagakarsa and Kebayoran Baru, remained relatively stable with
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subsidence below —5 mm. These findings are consistent with the geotechnical characteristics
and urbanization pressure observed in the coastal regions. Overall, the LSTM-based PS-InNSAR
model effectively represented ground deformation patterns with high accuracy and stability,
both temporally and spatially. The results of this research provide a scientific foundation for
the development of Al-based subsidence monitoring systems and support risk mitigation efforts
for land subsidence in high-risk urban areas such as DKI Jakarta. Beyond its scientific
contribution, the findings of this study hold significant relevance for the development of Green
Intelligent Systems in urban environmental management. Accurate deformation forecasting
enables automated early-warning mechanisms, supports sustainable groundwater extraction
policies, and improves the resilience of critical infrastructure in coastal megacities. By
integrating PS-INSAR observations with deep learning—based temporal modeling, this research
contributes to intelligent, environmentally aware monitoring systems that enhance climate
adaptation strategies and promote sustainable land and water resource governance in DKI
Jakarta.
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