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ABSTRACT: The increase in urbanization and global population expansion resulted in 

increased garbage production, causing considerable environmental and public health issues that 

exceeded traditional waste management approaches. To tackle these challenges, automated 

waste detection and analysis integrated computer vision, especially deep learning, with the 

Internet of Things (IoT) in intelligent waste management applications. This comprehensive 

literature review investigated a wide range of You Only Look Once (YOLO) applications in 

IoT-based waste detection and management, demonstrating its efficacy in addressing global 

waste issues. Employing specific keywords and Boolean operators, the review followed a 

rigorous methodology to explore reputable electronic databases for peer-reviewed articles 

published from 2019 to 2025. The primary findings indicated that different iterations of YOLO 

(v3 to v12) were integrated with diverse IoT devices and computing setups, including edge and 

centralized systems. These integrations facilitated four crucial applications: hazardous waste 

management, monitoring of smart bins, classification of waste types, and detection of litter in 

public spaces. This integration enhanced sustainability through improved waste management 

practices, increased efficiency in waste processes, and reduced manual labor requirements. 

Challenges included precise waste identification in complex scenarios, adaptation to 

fluctuating environmental conditions, and ensuring dependable, low-power operation of IoT 

devices. To sum up, the integration of YOLO and IoT established a robust basis for intelligent 

waste management, transforming reactive approaches into proactive strategies. Moving 

forward, research should prioritize enhancing the integration and power management of IoT 

sensors, optimizing edge deployment, and developing more resilient YOLO models. 
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1. Introduction 

The global population expanded rapidly, and an increasing number of individuals relocated to 

urban areas. These resulted in a substantial increase in waste production, which harmed public 

health and the environment [1, 2]. Numerous conventional waste management systems 

employed manual processes, which were prone to errors and inefficiencies in sorting and 

required significant time and effort [3, 4]. To address these issues, the integration of computer 

vision technology with the Internet of Things (IoT) emerged as a critical method for the 

https://doi.org/10.53623/gisa.v5i2.706
mailto:trisna.gelar@polban.ac.id


Green Intelligent Systems and Applications 5(2), 2025, 123–139 

124 
 

automatic detection and analysis of waste [5, 6]. While advanced solutions offered promising 

opportunities, their implementation in complex, real-world waste environments presented 

unique challenges and limitations that required thorough analysis. 

The primary features of these computer vision applications were derived from deep 

learning, a form of artificial intelligence [7]. YOLO was regarded as a leading object detection 

algorithm for smart waste management systems due to its real-time processing, high accuracy, 

and speed [8, 9]. YOLO variants, including YOLOv3, YOLOv4, YOLOv5, YOLOv7, 

YOLOv8, YOLOv9, YOLOv10, and YOLOv12, were applied in various environments such 

as cities, waterways, and even underwater to perform tasks like trash sorting [10], plastic 

detection [11, 12], and the identification of illegal dumping [13–15]. 

To develop intelligent and comprehensive waste management solutions, collaboration 

between YOLO and IoT was essential. IoT enabled data collection and communication, while 

YOLO provided smart visual analysis [3]. IoT-equipped smart bins gathered raw data using 

ultrasonic, force, temperature, gas, and GPS sensors [1, 16]. This integration offered several 

advantages: for example, smart bins could detect their fill levels [17], and advanced tracking 

systems could optimize collection routes [18]. This shift from reactive to proactive, data-driven 

strategies transformed waste management. YOLO utilized this visual data to extract 

meaningful information about the waste, its quantity, type, and location [19]. Neither 

technology alone was sufficient; IoT enabled real-time sensing and connectivity, while YOLO 

delivered the intelligence required for object detection and classification. Together, they 

supported the creation of cleaner, healthier, and more sustainable environments through 

intelligent and self-sufficient waste management systems [20]. 

This systematic literature review was meant to investigate the diverse applications of 

YOLO in IoT-based waste detection and management. It highlighted the effectiveness of these 

combined technologies in addressing global waste challenges and identified the limitations, 

research gaps, and future challenges in current implementations. The review was guided by the 

following research questions: 

‒ What are the primary uses of YOLO in IoT-based waste management systems? 

‒ What types of IoT devices and architectures are most commonly used with YOLO for waste 

detection? 

‒ How do various real-world waste management systems address YOLO’s key limitations? 

2. Materials and Methods 

A systematic and objective methodology was employed to conduct this literature review. This 

approach ensured the identification, selection, and synthesis of the most relevant studies on the 

application of YOLO and IoT in waste management. Adherence to established systematic 

review protocols enhanced the reliability and reproducibility of the findings. 

2.1. Search strategy. 

To discover relevant studies, a thorough literature search was conducted across a number of 

well-known electronic databases. IEEE Xplore, ScienceDirect, Springer, ACM Digital Library, 

Wiley Online Library, MDPI, and Garuda Kemdikbud were some of the databases used. These 

platforms were selected for their extensive literature on computer science, engineering, and 

environmental science. This approach allowed for a detailed overview of the academic field. 
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Targeted keywords and Boolean operators were carefully employed to obtain the most 

pertinent and precise search results. The primary keywords included "YOLO," "waste 

detection," "garbage detection," "trash detection," "waste management," "smart waste," "IoT," 

and "Internet of Things." Boolean operators such as "AND" and "OR" were used to combine 

these phrases and enhance the specificity of the search strings. An example of a search string 

utilized was '(YOLO) AND ("waste management" OR "trash detection") AND (IoT OR 

"Internet of Things")'. Carefully constructing these search strings was vital, as they directly 

impacted the comprehensiveness and relevance of the retrieved material. A vague string might 

have produced excessive irrelevant results or excluded significant studies, thereby diminishing 

the quality of the review. 

To ensure the relevance and consistency of the findings, the search was limited to articles 

published within a specific timeframe, from 2019 to 2025. Furthermore, the search was 

restricted to articles published in the English language to maintain uniformity and facilitate 

analysis. The search encompassed exclusively peer-reviewed journal papers and conference 

proceedings. This criterion was carefully implemented to guarantee the high quality and 

academic validity of the chosen papers, a crucial element for demonstrating the legitimacy of 

the review's results. 

2.2. Study selection criteria. 

Clear criteria were carefully defined for the inclusion and exclusion of studies to ensure that 

the selected studies were directly relevant to the research questions and to maintain the overall 

quality of the review at a high level. Studies were included if they were specifically about using 

YOLO algorithms with IoT technology to manage waste. These studies utilized real-world 

evaluations, case studies, or experimental results to demonstrate the practical application and 

effectiveness of these technologies. In contrast, studies that solely discussed YOLO algorithms 

or IoT technology in general without relating them to waste management were not considered. 

Furthermore, this review did not include sources like conference abstracts, editorials, or non-

academic reports to ensure the information was reliable and accurate. This intentional choice 

of method placed more weight on direct applicability and empirical evidence than on 

theoretical breadth. This ensured that the review's results were based on strong scientific 

contributions. 

The entire process of selecting studies for inclusion was systematically documented using 

a flow diagram, adapted from the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines [21]. This systematic documentation enhanced the 

comprehensibility and replicability of the review. The selection process involved identifying 

potential studies in databases, reviewing titles and abstracts, verifying  the eligibility of full 

texts, and incorporating them into the review. Figure 1 visually represented this process in the 

PRISMA flow diagram. 

2.3. Data extraction. 

After studies were selected systematically, a pre-designed data extraction form was used to 

consistently extract relevant information from each included article. The data points were 

carefully chosen to directly address the research questions and to support a thorough analysis 

of the literature. These data points included the author(s), year of publication, title, place of 

publication, specific use case for YOLO and IoT, version of YOLO used, IoT devices and 
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architecture involved, main findings and outcomes, and any reported problems or limitations. 

All of the studies examined followed consistent and complete data collection practices. 

 

 
Figure 1. PRISMA Flow diagram YOLO and IoT for .Smart Waste Management 

2.4. Data synthesis. 

The extracted data were carefully compiled and analyzed using thematic analysis. This 

qualitative method helped identify recurring themes, patterns, and trends in the use of YOLO 

and IoT for waste management. The results were then organized and presented in a logical 

manner, primarily based on the identified application areas and the research questions guiding 

the study. The studies were systematically compared and contrasted to highlight variations in 

their approaches, empirical findings, and reported outcomes, which helped develop a clearer 

understanding of the current state of research by showcasing both common practices and 

unique contributions in the field. 

3. Results and Discussion 

This section presented the results of the systematic literature review and provided a detailed 

analysis of the YOLO algorithm, its integration with IoT, and its diverse applications in smart 

waste management. The discussion was structured to address the research questions outlined 

in the introduction. This result was achieved by utilizing the identified studies to highlight 

significant trends, challenges, and advancements in the field. 

3.1. YOLO algorithm for waste detection. 

3.1.1. YOLO variants and their key features. 

The YOLO framework marked a major shift in the field of real-time object detection. It 

changed the way computer vision systems viewed and identified objects in images and video 



Green Intelligent Systems and Applications 5(2), 2025, 123–139 

127 
 

streams. Unlike traditional two-stage detectors, which first detected regions of interest before 

classification, YOLO analyzed the entire image in a single pass to simultaneously detect and 

localize objects. This single-step approach significantly improved speed and efficiency, 

making YOLO a vital component in applications such as real-time decision-making in 

autonomous vehicles, robotic navigation, and surveillance systems [22].  

The rapid and diverse evolution of YOLO models suggested that the most recent version 

might not always be the best choice for every scenario due to specific performance trade-offs 

an important consideration for real-world applications. Newer iterations, such as YOLOv8 and 

YOLOv9, introduced additional functionalities and improved performance metrics. In contrast, 

earlier versions like YOLOv5 offered greater stability and sometimes better performance in 

certain contexts, particularly in settings with limited computing resources. This assumption 

remained valid, as YOLOv9 demonstrated high accuracy in specific use cases while facing 

limitations in others [23]. Table 1 shows YOLO variants and their key features. 

Table 1. YOLO variants and their key features. 

YOLO 

Variant 
Year 

Backbone 

Network 
Key Architectural Changes Key Performance Improvements 

YOLOv3 [24], 

[25] 

2018 Darknet-53 FPN-inspired design, Three-

Scale detection; Independent 

logistic classifiers and binary 

cross-entropy loss; Anchor 

boxes. 

Improved feature extraction, better 

detection across scales; Faster than 

ResNet-101/152; Increased AP for 

small objects; Enhanced by training 

heuristics like Mosaic data 

augmentation and CIoU loss. 

YOLOv4 [26] 2020 CSPDarknet53 SPP, PANet, Mish activation, 

Mosaic data augmentation, 

CIoU loss, SAT, Weighted 

Residual Connections; 

YOLOv3 detection head; 

CmBN, DropBlock 

regularization 

Higher mAP (43.5% AP, 65.7% AP50 

on COCO); Competitive inference 

speeds (~65 FPS on Tesla V100); More 

robust to varying object 

sizes/occlusions; Improved training 

convergence; Twice as fast as 

EfficientDet; 10% AP, 12% FPS 

increase over YOLOv3 

YOLOv5[23], 

[25] 

2021 CSPDarknet53 SPPF (replaces SPP), PANet, 

Focus structure (replaced by 

6x6 Conv2d in v6.0/6.1), 

Multiscale Training, EMA, 

Mixed Precision Training, 

BCE/CIoU loss; Transition to 

PyTorch 

Significant step forward in real-time 

object detection, surpasses previous 

versions in performance and efficiency; 

Lightweight models (e.g., YOLOv5n 

2.1 MB INT8); Superior speed over R-

CNN 

YOLOv6[23] 2022 Novel 

backbone/neck 

Anchor-Aided Training 

(AAT), Self-Distillation; 

Decoupled head; Extended 

backbone/neck (YOLOv6-

L6); Bi-directional 

Concatenation (BiC) in Neck; 

SimCSPSPPF Module. 

Balances accuracy/speed, optimized for 

edge devices (Nano, Tiny variants); 

Overall better accuracy, 51% faster 

than previous anchor-based models; 

YOLOv6-N: 37.5% AP @ 1187 FPS; 

YOLOv6-S: 45.0% AP @ 484 FPS 

YOLOv7[27] 2022 E-ELAN Planned re-parameterized 

convolution (RepConvN); 

Coarse-to-fine auxiliary loss 

heads; "Bag-of-Freebies" for 

training; New compound 

scaling method for 

concatenation-based models. 

 

 

Strong balance between high accuracy 

(56.8% AP) and fast inference speeds 

(5-160 FPS); State-of-the-art 

performance; Reduced parameters 

(40%) and computation (50%) vs. 

SOTA; Outperforms 

Transformer/Conv-based detectors. 
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YOLO 

Variant 
Year 

Backbone 

Network 
Key Architectural Changes Key Performance Improvements 

YOLOv8[28] 2023 C2f, 

CSPDarknet53 

Anchor-free detection; 

Decoupled head; Modified 

loss function (Task 

Alignment Score, BCE, 

CIoU, DFL); Rectified Adam 

(RAdam), MixUp data 

augmentation; Modified 

Mosaic data augmentation; 

Dynamic Anchor 

Assignment. 

Superior real-time object detection, 

enhanced detection architecture, 

balances accuracy and speed, user-

friendly; Higher mAP (YOLOv8x: 

53.9% mAPval50-95); Improved 

generalization and small object 

detection; Handles class imbalance; 

Supports classification, segmentation, 

pose estimation. 

YOLOv9[29] 2024 GELAN Programmable Gradient 

Information (PGI); Auxiliary 

reversible branch; Multi-level 

auxiliary information; 

Optimized anchor-free 

prediction head 

State-of-the-art accuracy, high 

efficiency, addresses information loss 

in deep networks; Better parameter 

utilization; Significant reduction in 

parameters (49%) and calculations 

(43%) vs. YOLOv8 deep model (with 

0.6% AP improvement); Outperforms 

existing real-time detectors. 

YOLOv10 [30] 2024 Refined 

CSPNet 

NMS-free object detection 

(Consistent Dual 

Assignments); Lightweight 

classification head; Spatial-

channel decoupled 

downsampling; Rank-guided 

block design; Large-kernel 

convolution; Partial Self-

Attention (PSA) modules; 

Dual-head design. 

Enhanced speed and accuracy; 

Significant latency reduction (37-70%); 

1000 FPS capability; Higher mAP with 

fewer parameters (up to 57% fewer 

parameters, 38% fewer calculations 

than predecessors); Superior precision. 

YOLOv11[28], 

[30] 

2024 DarkNet, 

DarkFPN 

C3K2 Blocks; SPPF; C2PSA 

Block (Cross Stage Partial 

with Spatial Attention); 

Dynamic Channel Setting 

Faster, more accurate, highly efficient, 

supports multi-task (segmentation, 

classification, OBB, pose estimation); 

Enhanced feature extraction and higher 

precision with fewer parameters vs. 

YOLOv8; Optimized for speed and 

efficiency; YOLO11n: 39.5% 

mAPval50-95, faster CPU inference vs. 

YOLOv8n 

YOLOv12 [31] 2024 R-ELAN Attention-enhanced 

convolutional modules (A² - 

Area Attention Module with 

FlashAttention); Multi-scale 

feature fusion; Distribution 

Focal Loss; 7x7 Separable 

Convolutions; Removal of 

Positional Encoding; 

Adjusted MLP Ratio; 

Reduced Depth of Stacked 

Blocks; Maximized 

Convolution Operations. 

Robust performance with occlusion, 

reflections, small-object detection, 

multi-object coexistence; State-of-the-

art accuracy with competitive speed 

(YOLOv12-N: 40.6% mAP @ 1.64 

ms); Efficiency and parameter 

reduction (YOLOv12-S: 42% faster, 

36% computation, 45% parameters vs. 

RT-DETR); Expanded versatility 

(instance segmentation) 

3.1.2. YOLO for waste detection: applications and performance. 

In the context of waste detection applications, YOLO offered several benefits. Its real-time 

image processing capability was crucial in scenarios requiring prompt waste detection and 

response, such as in robotic waste sorting systems [32]. Furthermore, YOLO models 
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consistently demonstrated precise detection of different waste types [33–35], which was 

essential for efficient sorting and recycling operations. They also showed strong computational 

efficiency, making them suitable for deployment on devices with limited resources. This 

characteristic was particularly advantageous for IoT applications in waste management, where 

edge processing was often necessary [19, 36, 37]. Table 2 illustrated the common use of 

standard object detection metrics such as precision, recall, F1-score, and mean Average 

Precision (mAP), to assess the effectiveness and reliability of YOLO-based waste detection 

systems. Precision reflected how often the model correctly identified trash objects, while recall 

measured its ability to detect all instances of trash within an image. 

Diverse datasets containing images of various waste types from multiple environments 

were vital for developing and evaluating YOLO models for waste detection. For instance, the 

UGV-NBWASTE dataset [38] featured images of non-biodegradable waste collected across 

different settings. Researchers frequently applied data augmentation techniques to strengthen 

model robustness and enhance adaptability. These methods involved generating new training 

samples by modifying existing images to improve model performance [12, 39–41].  

Table 2. YOLO for waste detection: applications and performance. 

Paper 

Citation 

YOLO 

Version 

Used 

Waste Detection Applications 

Key Performance Metrics 

(mAP, Precision, Recall, F1-

score, FPS) 

R et al. [10] YOLOv5 Automated Waste Classification & Segregation 

(Plastic bottles, cans, etc.; Biodegradable, Plastic, 

Metal, Glass, Cardboard, Paper) 

mAP50: 0.301 (overall), Precision: 

0.458, Recall: 0.281, Accuracy: 

80%, FPS: 28 

Huang et 

al.[42] 

YOLOv8-

CBAM 

Household Waste Classification (17 types) mAP: 89.5% (enhanced YOLOv8-

CBAM) 

Mustapha et 

al.[43] 

Hybrid 

YOLOv8 + 

CNN 

Compost/Non-compost Material Identification F1 score: 0.86, Precision: 0.85, 

Recall: 0.87, Accuracy: 0.88 

Arishi [32] YOLOv8-

CBAM 

Household Waste Detection & Classification (17 

types) 

mAP: 89.5% (enhanced YOLOv8-

CBAM) 

Yang et al. 

[44] 

YOLOv5 Garbage Classification Accuracy: 90.2%, Recall: 91.6%, 

mAP: 95.2%; 93.5% accuracy, 

200FPS 

Cai et al. [45] Improved 

YOLOv4 

Multi-category Garbage Classification (15 objects in 

3 categories) 

Average Accuracy: 64%, FPS: 92f/s 

Ren et al. [46] YOLOv10n, 

YOLOv10m, 

YOLOv11n, 

YOLOv11m 

Plastic Waste Classification YOLO-11m: 98.03% accuracy, 

0.990 mAP50; YOLO-11n: 0.992 

mAP50, 0.2720s inference time 

Bianco et al. 

[47] 

YOLOv12, 

YOLOv7 

Marine Litter Detection (15 categories) YOLOv12: mAP@50: 0.8354, 

mAP@50-95: 0.7025; YOLOv7: 

71.4% accuracy 

Alharbi et 

al.[48] 

YOLOv8 Public Littering Behavior Detection (facial 

recognition, license plate) 

99.5% accuracy (for violator 

identity detection) 

Reddy et 

al.[14] 

YOLO PET bottles on lake surfaces; Object detection for 

visually impaired 

98% average accuracy, 4-6 FPS 

(CPU) 

Zhao et al. 

[49] 

Enhanced 

YOLOv8 

Riverbed Litter Monitoring mAP: 78.6% (on reconstructed 

underwater litter) 

Rehman et 

al.[15] 

 

YOLOv8 Underwater Waste Detection (plastics, bottles, bags, 

cans) 

High speed and accuracy (general 

claim) 
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Paper 

Citation 

YOLO 

Version 

Used 

Waste Detection Applications 

Key Performance Metrics 

(mAP, Precision, Recall, F1-

score, FPS) 

Rathod et 

al.[50] 

SSD 

MobileNet 

V2, 

YOLOv5x6 

Visual Pollution Detection (urban/textile waste 

classification) 

SSD MobileNet V2: 98.7% 

precision, 98.5% recall, 98% 

mAP50; YOLOv5x6: 79.2% mAP, 

74% recall, 80.6% precision 

S & Singh 

[39]. 

YOLOv8, 

YOLOv9 

Garbage Detection (drone-based) YOLOv8: 97-98% detection 

accuracy; YOLOv9: 7.7% higher 

mean detection accuracy than 

baseline 

Ashwini et al. 

[36] 

YOLOv5, 

YOLOv8 

Smart Bin Monitoring (fill levels, trash 

outside/inside) 

Good accuracy for most classes, 

highest for full-trash bin 

Pathak et 

al.[13] 

YOLOv5, 

YOLOv8 

Illegal Dumping Detection (trash outside containers) Good accuracy for most classes, 

highest for full-trash bin 

Munira et 

al.[11] 

YOLOv5 Intelligent Bin for Plastic Bottle Recycling Precision: 89.8%, Recall: 83.1%, 

mAP: 89.2%; mAP: 0.973 

3.2. IoT integration for smart waste management. 

3.2.1. IoT architectures for smart waste management. 

IoT played a crucial role in waste management solutions by enabling sensor deployment and 

efficient data collection. These systems used various sensors, such as cameras for identifying 

and analyzing waste, and fill-level sensors to monitor waste volume. Wi-Fi, LoRaWAN, and 

cellular networks were among the communication protocols employed to transmit data from 

these distributed sensors. Protocol selection depended on factors such as range, bandwidth, and 

power consumption. IoT-based waste management systems primarily relied on centralized and 

distributed (edge) computing paradigms for data transmission and processing. The system 

design determined the flow of information, from sensor data collection to device processing 

and activation. 

 

(a) 

 

(b) 

Figure 2. Illustration of centeralized IoT architecture (a); distributed, or edge IoT architecture (b). 

Sensor data was transmitted to a central server or cloud for processing and storage within 

a centralized IoT framework. This model excelled in complex training, trend analysis, and data 

analytics due to the central server’s high processing power and storage capacity. The server 

typically facilitated YOLO processing, allowing for comprehensive utilization of its robust 
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capabilities on raw sensor data or consolidated image analysis. However, this approach often 

resulted in latency, increased bandwidth demands, and potential server bottlenecks, making it 

less suitable for scenarios requiring real-time responsiveness. For instance, cloud-based IoT 

systems illustrated this concept through smart waste bins and real-time traffic updates [17]. 

In contrast, data processing and storage were decentralized across multiple networked 

devices or nodes in a distributed or edge IoT architecture, typically located near the data source. 

Edge computing offered clear advantages by processing data closer to the source—often 

directly on the devices—thereby reducing latency and bandwidth consumption. This was 

particularly important for real-time applications requiring immediate decision-making. Edge 

devices such as Raspberry Pis or other embedded systems installed near waste bins were 

capable of running the YOLO algorithm directly. This enabled instant analysis of waste 

characteristics, minimized data transmission to central servers, and supported immediate 

actions such as robotic sorting. While edge architectures provided scalability and fault 

tolerance, they also required effective communication and synchronization mechanisms to 

ensure reliable system performance [51]. 

3.2.2. Applications of YOLO and IoT in waste management. 

Integrating YOLO and IoT technologies has led to the development of multiple waste 

management applications, each tailored to tackle specific challenges and enhance the creation 

of smarter, more efficient, and sustainable systems. These apps encompass every phase of the 

waste management lifecycle, from initial detection and classification to specialized handling. 

Figure 3 illustrates the combined use of YOLO and IoT to address a variety of waste 

management challenges visually.  

 
Figure 3. Yolo and IoT integration waste management challenges. 

Transformative solutions in these areas are enabled by the synergistic application of IoT 

for data collection and transfer, alongside YOLO for real-time object identification. Table 3 

offers a detailed overview of specific applications, the YOLO versions used, associated IoT 

devices or architectures, challenges resolved, and notable performance metrics documented in 

various studies. 
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Table 3. Applications of YOLO and IoT in Waste Management 

Waste 

Management 

Applications 

Paper 

Citation 

YOLO 

Version 

Used 

IoT 

Devices/Architecture 

Challenges 

Addressed 

Key Performance 

Metrics 

Waste Type 

Classification 

R et al. 

[10] 

YOLOv5 Jetson Nano, 

Raspberry Pi 

Automated Waste 

Classification & 

Segregation (Plastic 

bottles, cans, etc.; 

Biodegradable, 

Plastic, Metal, Glass, 

Cardboard, Paper) 

mAP50: 0.301 

(overall), Precision: 

0.458, Recall: 0.281, 

Accuracy: 80%, FPS: 

28 

Huang et 

al.[42] 

YOLOv8-

CBAM 

Edge devices Household Waste 

Classification (17 

types) 

mAP: 89.5% 

(enhanced YOLOv8-

CBAM) 

Litter 

Detection in 

Public Spaces 

Bianco et 

al. [47] 

YOLOv12, 

YOLOv7 

UAVs, Underwater 

robots 

Occlusion, reflections, 

small-object 

detection, multi-

object coexistence; 

Challenging 

environments. 

YOLOv12: 

mAP@50: 0.8354, 

mAP@50-95: 0.7025; 

YOLOv7: 71.4% 

accuracy 

Alharbi et 

al.[48] 

YOLOv8 Surveillance cameras Real-time public 

littering behavior 

detection; Shadowy 

objects, varying 

lighting (rain/sun), 

small objects, low 

accuracy 

99.5% accuracy (for 

violator identity 

detection) 

Reddy et 

al.[14] 

YOLO Portable camera 

setup, Raspberry Pi 

Object detection at a 

distance for visually 

impaired 

98% average 

accuracy, 4-6 FPS 

(CPU) 

Zhao et al. 

[49] 

Enhanced 

YOLOv8 

Aerial-Aquatic 

Speedy Scanner 

(AASS) 

Motion blur, low 

resolution, underwater 

litter 

mAP: 78.6% (on 

reconstructed 

underwater litter) 

Rehman et 

al.[15] 

YOLOv8 Underwater cameras, 

ROVs, drones 

Low visibility, 

turbidity, cluttered 

backgrounds, low 

light 

High speed and 

accuracy (general 

claim) 

Rathod et 

al.[50] 

SSD 

MobileNet 

V2, 

YOLOv5x6 

UAVs Visual pollution in 

urban and textile 

landscapes 

SSD MobileNet V2: 

98.7% precision, 

98.5% recall, 98% 

mAP50; YOLOv5x6: 

79.2% mAP, 74% 

recall, 80.6% 

precision 

S & Singh 

[39]. 

YOLOv8, 

YOLOv9 

Drones (UAVs) Urban environments, 

remote locations, high 

proportion of small 

objects 

YOLOv8: 97-98% 

detection accuracy; 

YOLOv9: 7.7% 

higher mean detection 

accuracy than 

baseline 

Smart Bin 

Monitoring 

Ashwini 

et al. [36] 

YOLOv5, 

YOLOv8 

Raspberry Pi, Wi-Fi 

module, Ultrasonic 

sensors, Camera 

Fill-level monitoring, 

detection of trash 

outside/inside bin,  

instant alerts to 

authorities, 

temperature 

monitoring, real-time 

location tracking 

Pathak et 

al.[13] 

YOLOv5, 

YOLOv8 

Smart bins with 

sensors, cameras 

Illegal Dumping 

Detection (trash 

outside containers) 

Enables targeted 

interventions, reduces 

accumulation, 

improves reliability 

Hazardous 

Waste 

Management 

B & P 

[52] 

YOLO 

models (e.g., 

YOLOv8) 

Not mentioned Plastic Waste 

Classification 

Potential for scalable, 

impactful solutions in 

plastic waste 

classification and 

recycling 

Munira et 

al.[11] 

YOLOv5 Design of edge 

device. 

Intelligent bin with 

Detection-Based 

Reward System 

(DBRS)  

mAP: 0.973 for 

plastic bottle 

detection 
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A. General explanation of YOLO and IoT solutions for waste management. 

Combining YOLO and IoT created a strong foundation for efficient waste management. YOLO 

models enabled the quick identification and categorization of waste objects due to their 

exceptional real-time object detection capabilities. When integrated with IoT devices, these 

systems automated numerous waste management tasks, allowing for data collection, 

transmission, and remote control. This synergy facilitated proactive intervention, informed 

decision-making, and continuous monitoring in garbage collection and processing. For 

example, YOLO analyzed visual data to identify waste categories or instances of improper 

disposal, while IoT sensors collected data on litter presence and bin fill levels. This combined 

approach boosted productivity, minimized manual work, and promoted environmental 

sustainability. 

B. Summary of specific applications. 

‒ Waste Type Classification: This application is crucial for enhancing recycling efficiency 

and facilitating automated garbage sorting. Research has demonstrated the efficacy of 

various YOLO versions, such as YOLOv5 and YOLOv8-CBAM, in categorizing a range 

of waste materials like glass, paper, and plastic, frequently employing embedded devices 

such as the Raspberry Pi and Jetson Nano. Improvements have achieved notable accuracy 

for various waste categories (89.5% mAP for domestic waste using YOLOv8-CBAM); 

however, challenges remain in intricate real-world situations involving mixed or obscured 

items and changing environmental conditions.  

‒ Litter Detection in Public Spaces: To maintain urban cleanliness and mitigate pollution, 

YOLO and IoT are increasingly employed to identify and monitor trash across diverse 

environments, including parks, roadways, and aquatic systems. Notwithstanding challenges 

such as occlusion, reflections, diminutive object size, and inadequate visibility, Unmanned 

Aerial Vehicles (UAVs) and underwater robots equipped with YOLO models (including 

YOLOv12, YOLOv7, and YOLOv8) have demonstrated efficacy in detecting litter. Real-

time technologies capable of precisely identifying persons have been created to detect 

public littering activity. Despite advancements, detecting litter in congested environments 

and varying weather conditions remains challenging, necessitating more robust models and 

data augmentation methods. 

‒ Smart Bin Monitoring: This application aims to enhance collection schedules and save 

operational expenses by monitoring the real-time status of garbage containers, including 

fill levels and waste composition. IoT-enabled smart bins, equipped with sensors and 

cameras, utilize YOLO (YOLOv5, YOLOv8) to monitor fill levels, detect litter outside the 

bin, and issue alerts to law enforcement. This capability encompasses the identification of 

illegal dumping, hence indirectly enhancing collecting efforts. The primary problems are 

attaining low power consumption for extended battery life, ensuring resistance to 

vandalism, and maintaining reliable performance in diverse outdoor conditions. 

‒ Hazardous Waste Management: While plastic garbage is the primary emphasis of the 

presented table, the principles of YOLO and IoT are crucial for the management of 

hazardous waste, as inappropriate disposal presents health and environmental hazards. 
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YOLO models, such as YOLOv8, are being explored for the classification of plastic trash 

to facilitate scalable recycling solutions. Advanced systems that attain elevated detection 

accuracy (0.973 mAP), such as intelligent bins employing a Detection-Based Reward 

System utilizing YOLOv5, promote the proper disposal of specific hazardous waste 

categories, including plastic bottles. The main challenges involve combining these systems 

with rigorous safety rules and the necessity for highly sophisticated detection models to 

identify minute visual variations in dangerous compounds. 

3.3. Cross-cutting limitations and evaluation inconsistencies. 

This section synthesized and expanded upon the significant limitations and inconsistencies 

observed within the existing body of research concerning YOLO and IoT applications in smart 

waste management. These challenges impeded the extensive and effective implementation of 

solutions and provided guidance for essential avenues of future research. Firstly, the challenges 

associated with generalizability and dataset limitations presented a considerable obstacle. 

While performance metrics frequently demonstrated promise in controlled environments, a 

significant limitation observed in numerous studies was the lack of generalizability of the 

models. The high accuracy achieved for specific waste categories or in idealized conditions 

often did not translate to real-life scenarios, largely due to the absence of general-purpose 

models trained on large, diverse, and publicly available datasets. This limitation particularly 

affected applications such as waste type classification, where models trained on clean, well-

separated waste items often failed to handle mixed or obscured objects, and litter detection, 

where varying environmental conditions negatively impacted model performance. 

Secondly, evaluation inconsistencies significantly complicated progress. A prominent 

issue was the lack of uniformity in evaluation metrics and testing protocols across studies. 

Although standard metrics like mAP, precision, and recall were commonly reported, the 

thresholds used, such as the Intersection over Union (IoU) for mAP, as well as test setups and 

baseline references, varied considerably. This variation made direct, side-by-side comparisons 

of different YOLO versions or integrated systems under identical real-world conditions rare. 

As a result, benchmarking progress across the field became challenging. The lack of 

standardized benchmarks hindered comprehensive understanding of the effectiveness of 

different approaches in specific real-world applications and limited the systematic 

advancement of the technology. 

Thirdly, the existing literature revealed a significant gap in the documentation of long-

term, large-scale deployments of YOLO-IoT waste management systems in operational smart 

cities or municipalities. This absence indicated that the academic studies were largely 

underexamined and did not address many practical and operational challenges. These 

challenges included ensuring the durability and long-term accuracy of sensors—particularly in 

maintaining reliable performance of smart bins—delivering energy-efficient power solutions 

in harsh outdoor conditions, establishing sustainable maintenance routines, mitigating data 

transmission delays across large network infrastructures, and implementing strong data 

security and privacy safeguards. Such operational concerns were especially critical for 

applications like smart bin monitoring and public litter detection, which required continuous, 

dependable functionality. 
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3.4. Future research directions. 

In the context of the recognized limitations and challenges, subsequent research in the 

integration of YOLO and IoT for smart waste management needed to focus on several critical 

areas to advance the field toward more resilient, scalable, and impactful solutions. First, 

addressing the challenges associated with generalizability and dataset limitations was essential. 

A key research emphasis was placed on developing YOLO models capable of generalizing 

effectively across a wide range of diverse and unpredictable waste environments. These 

environments included variations in lighting, weather conditions, object occlusion, and the 

presence of novel or degraded waste items. Future studies explored advanced data 

augmentation methods, robust domain adaptation strategies, and the strategic use of synthetic 

data generation to create more resilient models. Additionally, the investigation of meta-learning 

techniques for rapid adaptation to new waste categories or deployment contexts emerged as a 

vital research direction. 

Second, in response to evaluation inconsistencies, future work promoted the 

development of standardized benchmarking. This involved creating large-scale, publicly 

accessible benchmark datasets that captured a broad spectrum of waste types, environmental 

settings, and deployment scenarios, including drone-based, static camera, and robotic arm 

systems. Furthermore, the research community was encouraged to adopt standardized 

evaluation protocols and metrics that extended beyond traditional mAP. These included 

practical considerations relevant to real-world deployment, such as power consumption, 

inference latency on specific edge devices, and long-term operational reliability. 

Third, the limited documentation of long-term and large-scale deployments highlighted 

the need for significant progress in edge AI optimization. Future research placed greater 

emphasis on developing lightweight model architectures through pruning, knowledge 

distillation, and efficient quantization techniques. Neural architecture search (NAS) tailored to 

ultra-low-power IoT edge devices also played a pivotal role. Moreover, long-term operational 

challenges were addressed by designing self-calibrating systems to mitigate sensor drift, 

implementing robust and energy-efficient power management solutions for remote locations, 

formulating predictive maintenance strategies, and establishing secure, low-latency 

communication protocols suitable for widespread and distributed smart waste infrastructures. 

4. Conclusions 

This study systematically reviewed the integration of You Only Look Once (YOLO) 

algorithms and Internet of Things (IoT) technologies to address global waste management 

challenges through intelligent waste management systems. The review highlighted the critical 

role of YOLO’s real-time object detection capabilities, speed, and accuracy, which made it 

highly suitable for edge deployment across various applications. At the same time, IoT’s 

essential role in connecting sensors, collecting data, and enabling seamless communication 

through both distributed (edge) and centralized architectures was thoroughly explored. The 

combined use of YOLO and IoT demonstrated considerable effectiveness across four key areas 

of waste management: classification of waste types, detection of litter in public areas, 

monitoring of smart bins, and management of hazardous waste. These integrations illustrated 
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strong potential to shift waste management systems from reactive to proactive, data-driven 

approaches. 

The review also identified several critical limitations and inconsistencies in current 

implementations. These included limited model applicability across diverse real-world 

environments due to a lack of varied datasets, inconsistencies in evaluation metrics and 

protocols, and a scarcity of documented long-term, large-scale deployments that address 

operational complexities. Overall, the integration of YOLO and IoT provided a solid 

foundation for more effective waste management, contributing to improved environmental 

health, cleanliness, and sustainability. To fully realize this potential, future research should 

prioritize enhancing model generalizability, developing standardized benchmarks, and 

optimizing energy-efficient solutions for long-term edge deployment. 
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