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ABSTRACT: Cell segmentation is a critical process in biomedical image analysis. This study 

evaluated the performance of three state-of-the-art deep learning models—DeepLabV3+, U-

Net++, and Attention U-Net—using the Blood Cell Count and Detection (BCCD) dataset, 

which contains annotated images of blood cells. The models were rigorously analyzed through 

qualitative and quantitative evaluations, employing accuracy, precision, recall, and F1 score 

metrics. The results demonstrated that all three models achieved high segmentation 

performance, with U-Net++ excelling in accuracy (0.9740), precision (0.9511), and F1 score 

(0.9576), Attention U-Net achieving the highest recall (0.9692), and DeepLabV3+ providing a 

balanced performance across all metrics. Qualitative analyses revealed that U-Net++ delivered 

superior segmentation of complex and overlapping cell structures, while Attention U-Net 

exhibited exceptional sensitivity to dense cell clusters. Training and validation curves of the 

models confirmed their stability and generalizability, indicating efficient convergence without 

overfitting. By highlighting the unique strengths of each model, this study emphasized the 

importance of selecting architectures tailored to specific tasks. Future research will expand the 

application of these models to diverse biomedical datasets to further advance automated image 

analysis and its impact on healthcare outcomes. 
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1. Introduction 

Recent advancements in biomedical research have emphasized the importance of precise and 

efficient cell segmentation, which plays a crucial role in disease diagnosis, drug discovery, and 

cellular behavior monitoring. Accurate segmentation provides critical insights into cell 

morphology, facilitating the early detection of diseases such as cancer, assessing drug efficacy, 

and supporting personalized medicine [1]. Furthermore, high-throughput experiments require 

automated image analysis to process vast amounts of data efficiently and extract meaningful 

conclusions [2]. The importance of improving segmentation techniques is underscored by their 

applications in quantifying immune responses in infectious diseases, tracking tumor 
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progression, and evaluating treatment efficacy. In regenerative medicine and tissue 

engineering, segmentation enables the monitoring of stem cell differentiation and the success 

of therapeutic interventions [3]. 

Traditional segmentation methods, such as manual annotations and classical image 

processing techniques, have often been time-consuming, error-prone, and dependent on 

predefined rules [4]. These limitations are exacerbated when handling large datasets, where 

manual efforts become subjective and non-scalable. Additionally, classical methods have 

struggled with overlapping cells, irregular cell structures, and variations in imaging conditions, 

reinforcing the necessity for automated approaches [5]. Deep learning has emerged as a 

revolutionary tool in biomedical image analysis, offering hierarchical feature learning 

capabilities that significantly enhance segmentation accuracy and efficiency. 

One of the foundational architectures in biomedical segmentation was U-Net, which 

introduced a fully convolutional encoder-decoder structure with skip connections, enabling 

precise segmentation while preserving spatial information [6]. This model laid the groundwork 

for more advanced architectures such as DeepLabV3+, U-Net++, and Attention U-Net. 

DeepLabV3+ utilizes Atrous Spatial Pyramid Pooling (ASPP) to extract multi-scale contextual 

features, making it highly effective for overlapping and irregularly shaped cells [7]. U-Net++ 

improves skip connections through a nested architecture, refining segmentation boundaries and 

enhancing detail preservation [8]. Attention U-Net integrates attention gates to selectively 

focus on critical regions, suppressing background noise and improving segmentation in 

complex cellular environments [9]. Despite these advancements, a comprehensive comparative 

analysis of these models for biomedical cell segmentation has remained limited. This study 

aims to benchmark DeepLabV3+, U-Net++, and Attention U-Net using the Blood Cell Count 

and Detection (BCCD) dataset, evaluating their segmentation performance in terms of 

accuracy, sensitivity, specificity, and F1 score. This research provides an in-depth performance 

comparison to guide the selection of optimal architectures for biomedical applications. 

On the other hand, traditional segmentation techniques, such as Otsu’s Thresholding [10] 

and the Watershed Algorithm [11], have long been used in biomedical imaging. Otsu’s method, 

a histogram-based global thresholding technique, is effective for simple, high-contrast images 

but fails in overlapping cell segmentation [12]. Watershed segmentation, a region-based 

approach, effectively separates touching objects but often suffers from over-segmentation in 

noisy images [13]. While these classical methods are computationally efficient, they lack the 

adaptability required for complex biomedical images. 

Deep learning-based segmentation models, such as SegNet [14] and Mask R-CNN [15], 

have advanced the field significantly. SegNet, an encoder-decoder model, effectively extracts 

spatial features but lacks skip connections, which limits its ability to retain fine details. Mask 

R-CNN, developed for instance segmentation, provides precise object delineation but is 

computationally expensive, making it less practical for large-scale biomedical applications 

[16]. More recently, Transformer-based models, such as TransUNet [17], have integrated CNN 

feature extraction with self-attention mechanisms, demonstrating superior segmentation 

capabilities. However, these models require large datasets for training and have high 

computational complexity, limiting their real-world feasibility in medical imaging [18]. 

Given these considerations, DeepLabV3+, U-Net++, and Attention U-Net were selected 

for this study due to their proven effectiveness in biomedical segmentation. DeepLabV3+, with 

its multi-scale feature extraction capabilities, excels in capturing complex cellular structures 



Green Intelligent Systems and Applications 51, 2025, 61–73 

63 
 

[7]. U-Net++, with nested skip connections, enhances spatial information retention, making it 

ideal for precise boundary segmentation [8]. Attention U-Net employs attention gates to 

enhance regional focus, making it particularly effective in dense cellular environments [9]. 

These models provide an optimal balance of segmentation accuracy, computational efficiency, 

and adaptability, making them suitable for biomedical image analysis. 

Deep learning-based segmentation models have also demonstrated strong performance 

across multiple domains, including biomedical and non-medical applications. In non-medical 

fields, DeepLabV3+ has been applied in autonomous driving for lane detection, achieving 

94.5% accuracy and demonstrating its capability in handling complex spatial layouts [19]. U-

Net++ has been used in environmental monitoring, particularly in flood mapping, where it 

achieved an F1 score of 92.3%, highlighting its ability to preserve fine details [20]. Attention 

U-Net has demonstrated strong performance in wildfire boundary detection, achieving 95.8% 

sensitivity, showcasing its effectiveness in detecting irregular spatial patterns [21]. 

In biomedical applications, U-Net++ has been widely employed for melanoma 

segmentation, achieving a Dice coefficient of 89.7%, outperforming conventional 

segmentation methods [22]. DeepLabV3+ has been applied in brain tumor segmentation, 

obtaining an accuracy of 93.1% on the BraTS dataset [23]. Attention U-Net has shown strong 

performance in pancreas segmentation, achieving an average Dice score of 87.6%, proving its 

effectiveness in small and complex anatomical structures [24]. 

Comparative studies have analyzed the effectiveness of these models in different 

biomedical applications. For instance, a study on liver segmentation using CT images found 

that Attention U-Net achieved the highest sensitivity (94.8%), while U-Net++ had the highest 

specificity (92.7%) [25]. Similarly, in skin lesion segmentation, DeepLabV3+ achieved an IoU 

of 86.5%, while U-Net++ and Attention U-Net reached 88.1% and 90.2%, respectively [26]. 

These findings highlight the strengths of each model, with U-Net++ excelling in boundary 

refinement, Attention U-Net performing well in dense cellular regions, and DeepLabV3+ 

offering robust multi-scale analysis [27]. 

The literature supports the growing role of deep learning in biomedical segmentation and 

highlights the limitations of traditional methods. While classical techniques such as Otsu’s 

Thresholding and Watershed struggle with overlapping structures, deep learning models 

overcome these limitations by leveraging feature extraction and advanced network 

architectures [28]. Among them, DeepLabV3+, U-Net++, and Attention U-Net provide the best 

balance of accuracy, computational efficiency, and generalizability, making them the optimal 

candidates for biomedical segmentation tasks [29]. 

Despite these advancements, a comprehensive comparison of these models on cell 

segmentation tasks has remained limited, mainly using the Blood Cell Count and Detection 

(BCCD) dataset. The BCCD dataset, a widely used benchmark for blood cell segmentation, 

provides annotated images of blood cells. This study aims to evaluate the performance of 

DeepLabV3+, U-Net++, and Attention U-Net on the BCCD dataset, analyzing their 

effectiveness in terms of accuracy, sensitivity, specificity, and F1 score. This research seeks to 

guide the selection of appropriate architectures for specific biomedical applications. 

3. Methodology 

This study employed a structured approach for cell segmentation using three advanced deep 

learning models: DeepLabV3+, U-Net++, and Attention U-Net. The methodology consisted of 
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several sequential stages, including data pre-processing, training, validation, testing, and 

performance evaluation. Figure 1 provides a system overview of the steps involved in this 

study. The first stage began with data pre-processing, which included initiating the dataset, 

reshaping the data, and splitting it into training, validation, and testing subsets. Pre-processing 

ensured that the input data was normalized and formatted correctly to improve the performance 

and stability of the models during training. The data reshaping technique ensured that all the 

images were already the same size for training. 

In the training stage, the three models underwent hyperparameter tuning, pooling layer 

adjustments, and layer configuration optimization to achieve optimal performance. This 

iterative process ensured that each model was tailored to effectively handle the complexities of 

the dataset. Once the training was complete, the testing phase was carried out. During this 

stage, the trained models were evaluated using the test dataset to predict segmentation outputs. 

The predictions were compared against the ground truth to assess the segmentation accuracy. 

Finally, the performance evaluation stage involved computing various metrics, including 

accuracy, sensitivity, specificity, and F1 score. These metrics were used to compare the 

effectiveness of DeepLabV3+, U-Net++, and Attention U-Net in segmenting cells. The model 

with the best overall performance was identified based on the evaluation results. This 

methodology provided a comprehensive framework for analyzing the performance of state-of-

the-art deep learning models in cell segmentation, contributing to the advancement of 

automated biomedical image analysis. 

 

 

Figure 1. System overview of the proposed research. 

3.1. Dataset. 

The BCCD dataset was a publicly available dataset designed for training and evaluating 

machine learning models for blood cell segmentation and classification. This dataset served as 

an essential benchmark for tasks such as cell counting, detection, and morphometry, providing 

high-quality labeled data for biomedical image analysis [25]. The dataset was originally 

sourced from Kaggle [25], and it contained microscopic images of blood cells and the 

corresponding binary masks that segmented individual cells from the background. A rich 

diversity of cellular shapes and configurations, including overlapping cells, irregularly shaped 

cells, and cells captured under varying lighting conditions, was collected in these datasets. 
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For this study, the dataset was split into training (80%) and testing (20%) subsets. The 

BCCD dataset suffered from class imbalance. To tackle this problem, we applied weighted 

binary cross-entropy (WBCE). WBCE assigned a higher weight to positive pixels (cells) to 

ensure they contributed more to the loss function, helping the model learn better segmentation 

in imbalanced conditions. For the testing phase, unseen images and their masks were used to 

evaluate model performance, ensuring that the results reflected real-world generalization 

capabilities. The diversity of the BCCD dataset, combined with its structured annotations, made 

it particularly suitable for benchmarking state-of-the-art deep learning models such as 

DeepLabV3+, U-Net++, and Attention U-Net in biomedical applications. 

3.2. Model architecture. 

DeepLabV3+ was a powerful semantic segmentation model that leveraged atrous spatial 

pyramid pooling (ASPP) to capture contextual information at multiple scales. It featured a 

unique encoder-decoder structure where the encoder extracted rich feature representations, and 

the decoder refined these features to produce detailed segmentation maps. U-Net++ was an 

enhanced version of the original U-Net architecture, designed to bridge the semantic gap 

between the encoder and decoder sub-networks. This was achieved through nested and dense 

skip connections, which allowed for better feature propagation and localization accuracy. 

Meanwhile, Attention U-Net incorporated attention gates within the standard U-Net 

framework to focus on relevant regions of the input image while suppressing irrelevant 

background information. This mechanism enabled the model to effectively segment intricate 

and small structures in biomedical images. Table 1 summarized the parameters and total 

number of layers for each model. The comparison highlighted the trade-offs between model 

complexity, computational cost, and segmentation performance. While DeepLabV3+ had the 

highest number of parameters and layers, providing exceptional performance in challenging 

tasks, its computational demands were not ideal for resource-constrained environments. 

Conversely, U-Net++ and Attention U-Net offered lightweight alternatives with excellent 

segmentation capabilities, making them suitable for a wider range of applications. 

DeepLabV3+ exhibited the highest inference time, which was approximately 61% slower than 

U-Net++. This increased computational cost was attributed to its deeper architecture. In 

contrast, U-Net++ and Attention U-Net demonstrated faster inference times, highlighting their 

potential for deployment in time-sensitive biomedical imaging tasks. 

Table 1. Model’s parameters. 
Model’s name Total parameters Total number of layers Inference Time 

DeepLabV3+ 27,585,857 200 0.0263 sec/image  

Attention U-Net 8,127,620 52 0.0181 sec/image 

U-Net++ 7,781,761 25 0.0163 sec/image 

To determine whether the performance differences among the models were statistically 

significant, we conducted paired T-tests and Wilcoxon Signed-Rank tests. Table 2 summarized 

the statistical results across the three models. 

Table 2. Model’s statistical comparison.  
Comparison T-test p-value Wilcoxon test p-value 

DeepLabV3+ vs. U-Net++ 0.0031 0.1250 

U-Net++ vs. Attention U-Net 0.8083 0.6250 

DeepLabV3+ vs. Attention U-Net 0.1143 0.1250 
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The T-test confirmed a significant difference between DeepLabV3+ and U-Net++ (p = 

0.0031), indicating that U-Net++ significantly outperformed DeepLabV3+ in segmentation 

accuracy. However, no significant differences were found between U-Net++ and Attention U-

Net (p = 0.8083) or between DeepLabV3+ and Attention U-Net (p = 0.1143), suggesting 

comparable segmentation performance between these models. 

3.3. Evaluation Metrics. 

To comprehensively evaluate the performance of the segmentation models, multiple metrics 

were employed to ensure a robust assessment of the model segmentation capabilities, such as 

accuracy, sensitivity, specificity, F1 score, Dice coefficient, and Intersection over Union (IoU). 

Accuracy measures the proportion of correctly classified pixels, providing a general measure 

of the model's effectiveness: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (1) 

where TP is True Positives (correctly segmented positive pixels), TN is True Negatives 

(correctly segmented negative pixels), FP is False Positives (pixels incorrectly classified as 

positive), and FN is False Negatives (pixels incorrectly classified as negative). This metric is 

useful for understanding the overall performance but may not distinguish well in cases of 

imbalanced datasets.  

Precision quantifies the proportion of true positive pixels among all predicted positive 

pixels: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

This metric emphasizes the model's ability to avoid false positives, making it particularly 

valuable in applications where over-segmentation could lead to erroneous conclusions. In 

Recall, it measures the ability of the model to correctly identify all true positive pixels: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

High recall ensures that the model captures the majority of relevant structures, such as 

cells, without missing important details. For F1 Score is the harmonic mean of precision and 

recall, providing a balanced measure of performance in scenarios with class imbalances: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

This metric highlights the trade-off between precision and recall, ensuring that the model 

performs well in detecting and segmenting relevant structures without excessive false positives 

or negatives. Dice coefficient quantifies how well the predicted segmentation matches the 

ground truth: 

𝐷𝑖𝑐𝑒 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎
 (5) 
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This metric is more sensitive to small objects, making it useful for medical image 

segmentation. It will calculate how well the alignment of your ground truth and predicted 

result. Meanwhile, IoU is defined as the ratio of intersection to union between prediction and 

ground truth: 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (6) 

Higher values of IoU and Dice indicated better segmentation performance. These metrics 

collectively ensured a robust evaluation of each model, capturing its strengths and weaknesses 

in terms of overall performance, the ability to detect structures of interest, and the balance 

between false positives and false negatives. By focusing on accuracy, precision, recall, F1 

score, Dice coefficient, and IoU, this study provided a comprehensive assessment of the 

segmentation models' effectiveness for biomedical image analysis. 

 
Figure 1. Training and validation accuracy curves for (a) DeepLabV3+ (b) U-Net++ (c) Attention U-Net. 

4. Results and Discussion 

This section presented the experimental results of DeepLabV3+, U-Net++, and Attention U-

Net on the BCCD dataset. The models were evaluated based on accuracy, precision, recall, and 

F1 score. Additionally, training loss and accuracy graphs were provided to demonstrate model 

convergence and performance over 100 epochs. The models were implemented in Python using 

TensorFlow and Keras libraries. The training was conducted on an NVIDIA RTX 3090 GPU 

with a batch size of 16, a learning rate of 1e-3, and the Adam optimizer. Fine-tuning of all 

parameters was applied to prevent overfitting. 

Hyperparameter tuning was performed using a random search approach, which 

efficiently explored the hyperparameter space by randomly sampling values within pre-defined 

ranges. The Adam optimizer was selected for its ability to adapt the learning rate dynamically, 

enhancing convergence stability. The learning rate was randomly sampled from [1e-4, 1e-3, 

and 1e-2], with a learning rate of 1e-3 being selected based on validation set performance. The 

batch size was randomly sampled from [8, 16], with 16 being selected as the optimal batch size 

based on the trade-off between computational efficiency and model performance. The dropout 

rate was randomly sampled from [0.2, 0.3, 0.4], with 0.3 being selected to prevent overfitting. 



Green Intelligent Systems and Applications 51, 2025, 61–73 

68 
 

After all hyperparameters were carefully selected, the training and validation accuracy 

and loss graphs were plotted because these graphs were essential for evaluating the 

effectiveness of the model and the training process. These graphs provided insights into model 

convergence, with a steady decline in loss and an increase in accuracy, indicating progress 

toward an optimal solution. They also helped detect overfitting, where training accuracy 

improved while validation accuracy stagnated or declined, as well as underfitting, where 

neither curve showed significant improvement. Monitoring these curves ensured training 

stability and revealed potential issues like an unstable learning rate or noisy data. 

Furthermore, they facilitated comparison among models by highlighting differences in 

convergence rates and learning efficiency. A close alignment between training and validation 

curves signified good generalization capability, ensuring the model performed well on unseen 

data. Additionally, these graphs guided improvements in model design by identifying 

bottlenecks and suggesting adjustments like data augmentation, regularization, or architectural 

modifications, ultimately contributing to a robust and reliable model. 

Figure 2 illustrates all three models' training and validation accuracy across 100 epochs. 

The graph showed a consistent improvement in both training and validation accuracy. 

Similarly, Figure 3 presents the training and validation loss curves, demonstrating a significant 

reduction in loss during the initial epochs. These results indicated that all the models 

successfully learned to generalize without overfitting. 

 
Figure 2. Training and validation loss curves for (a) DeepLabV3+ (b) U-Net++ (c) Attention U-Net. 

 

To visually evaluate the segmentation quality, Figure 4 illustrates the input image, ground truth 

mask, and predicted segmentation masks generated by DeepLabV3+, U-Net++, and Attention 

U-Net for five representative test images. The predictions from all three models closely 

matched the ground truth, showcasing their ability to perform accurate cell segmentation. 

Among these, U-Net++ demonstrated the most precise segmentation, particularly in cases of 

overlapping cells, as evidenced by its well-defined boundaries and minimal false positives. 

In addition to the comparative analysis of multiple test images, Figure 5 provides a 

comprehensive view of one test image with the corresponding overlay of predictions from each 

model on the ground truth mask. The overlay visualization enabled a clearer assessment of the 

model segmentation performance, highlighting the success of the models’ predictions. For 

instance, while all models handled isolated cells effectively, U-Net++ consistently achieved 
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superior performance in detecting and segmenting complex cell clusters, as evident in the 

overlap regions. 

 

 

Figure 3. Qualitative comparison of segmentation results. 

Furthermore, Table 3 provides a quantitative comparison of the models based on 

accuracy, precision, recall, and F1 score. Accuracy reflects the overall correctness of the 

segmentation, measuring the proportion of correctly classified pixels (true positives and true 

negatives) out of all pixels. In this study, U-Net++ achieved the highest accuracy (0.9740), 

suggesting its ability to provide reliable predictions across diverse test cases. Precision 

evaluates the proportion of true positive pixels among all pixels predicted as positive, 

highlighting the model's ability to avoid over-segmentation. With a precision of 0.9511, U-

Net++ minimized false positives effectively, which is critical for tasks where over-segmenting 

irrelevant structures could lead to misleading results. Recall, on the other hand, measures the 

model's ability to identify all true positive pixels, indicating sensitivity to target structures. 

Attention U-Net excelled in this aspect, achieving a recall of 0.9692, demonstrating its 

effectiveness in capturing true positives, particularly in challenging scenarios with densely 

overlapping cells. F1 score, the harmonic mean of precision and recall, provides a balanced 

measure of the trade-off between these metrics. U-Net++ achieved the highest F1 score 

(0.9576), highlighting its ability to balance precision and recall effectively. 
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Figure 4. Overlay Comparison of Predicted Segmentation. 

 

Table 3. Performance comparison across all models. 
Model Accuracy Precision Recall F1 Score Dice Coef. IoU 

DeepLabV3+ 0.9704 0.9447 0.9589 0.9518 0.9106 0.8988 

U-Net++ 0.9740 0.9511 0.9642 0.9576 0.9541 0.9298 

Attention U-Net 0.9734 0.9450 0.9692 0.9569 0.9415 0.9224 

 

The results demonstrate that all three models are highly effective in segmenting blood 

cells, with slight variations in their strengths. U-Net++ high precision makes it suitable for 

applications where false positives must be minimized, while Attention U-Net high recall is 

advantageous for detecting true positives in dense cell clusters. DeepLabV3+ provides a 

balanced approach, making it a versatile option for general segmentation tasks. The consistent 

performance across both qualitative and quantitative analyses emphasizes the reliability of 

these models. The overlay comparison (Figure 5) provides further evidence of the practical 

applicability of U-Net++ in complex segmentation tasks, making it the most robust choice for 

handling overlapping and irregularly shaped cells. These findings underscore the importance 

of model selection based on the specific requirements of the biomedical application, 

contributing valuable insights to the advancement of automated cell segmentation. 

To further support the claim that U-Net++ performs best in segmenting overlapping cells, 

we computed Contour Matching Score (CMS), both of which confirmed superior segmentation 

accuracy for U-Net++. CMS is an objective way to assess segmentation accuracy in 

overlapping cell regions by comparing predicted and ground-truth contours. Table 4 indicates 

the comparison of the CMS results for all models. 

 

Table 4. CMS Performance comparison across all models. 
Model Contour Matching Score (CMS) 

DeepLabV3+ 0.3421 

U-Net++ 0.5125 

Attention U-Net 2.3473 

 

The results indicated that U-Net++ achieved the lowest CMS (0.3421), demonstrating 

the highest segmentation accuracy. Attention U-Net achieved a moderate CMS (0.5125), while 

DeepLabV3+ had the highest CMS (2.3473), suggesting difficulty in accurately delineating 

overlapping cell boundaries. These quantitative results validate the qualitative visual 
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observations and confirm that U-Net++ outperforms other models in overlapping cell 

segmentation. 

 

5. Conclusions 

This benchmark study presented a thorough comparative analysis of three advanced deep 

learning models, i.e., DeepLabV3+, U-Net++, and Attention U-Net, for cell segmentation using 

the BCCD dataset. Each model demonstrated exceptional performance across multiple 

evaluation metrics, with distinct advantages aligning with specific segmentation requirements. 

U-Net++ emerged as the most effective, with higher results in accuracy, precision, and F1 

score, consolidating its benefits in minimizing false positives due to its nested skip connections, 

which enhanced feature refinement and localization. Attention U-Net showcased its strength 

in detecting true positives in dense and overlapping cellular regions, yielding higher recall 

performance. Its integration of attention gates enabled superior focus on relevant regions while 

suppressing background noise. DeepLabV3+ leveraged its atrous spatial pyramid pooling to 

handle diverse contextual information, making it a versatile choice for general biomedical 

segmentation tasks. Trade-offs between model complexity and performance were also 

considered. DeepLabV3+, while delivering balanced results, had the highest parameter count 

and the most computationally demanding architecture, potentially limiting its applicability in 

resource-constrained environments. Conversely, U-Net++ and Attention U-Net were 

computationally efficient, with significantly lower parameter counts, making them suitable for 

broader applications without sacrificing segmentation quality. However, U-Net++'s focus on 

precision may have resulted in slightly reduced sensitivity, while Attention U-Net's emphasis 

on recall may have led to a marginal increase in false positives. These findings underscored the 

importance of selecting models based on the specific priorities of a biomedical application, 

whether it be precision, recall, or computational feasibility. This research provided a valuable 

framework for guiding such decisions and highlighted the potential for further innovation. 

Future work can explore ensemble approaches combining the strengths of these models or 

hybrid architectures integrating attention mechanisms with multiscale feature extraction. 

Moreover, extending the evaluation to include diverse and noisy datasets will further validate 

the robustness of these models in real-world scenarios. Future work will also validate the 

transferability of DeepLabV3+, U-Net++, and Attention U-Net on datasets such as MoNuSeg 

(nuclei in microscopy segmentation) and ISIC (skin lesion segmentation) to assess their 

generalization to other biomedical tasks. By addressing these challenges, the insights gained 

from this study can pave the way for more advanced, reliable, and efficient automated cell 

segmentation methods, contributing to enhanced healthcare outcomes and accelerating 

biomedical research. 
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