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ABSTRACT: Automatic Speech Recognition (ASR) faced challenges in accuracy and noise 

robustness, particularly in Bahasa Indonesia. This research addressed the limitations of single 

feature extraction methods, such as Mel-Frequency Cepstral Coefficients (MFCC), which were 

sensitive to noise, and Relative Spectral Transform - Perceptual Linear Predictive (RASTA-

PLP), which was less effective in frequency representation, by proposing a hybrid approach 

that combined both techniques using Long Short-Term Memory (LSTM) models. MFCC 

enhanced spectral accuracy, while RASTA-PLP improved noise robustness, resulting in a more 

adaptive and informative acoustic representation. The evaluation demonstrated that the hybrid 

method outperformed single and non-extraction approaches, achieving a Character Error Rate 

(CER) of 0.5245 on clean data and 0.8811 on noisy data, as well as a Word Error Rate (WER) 

of 0.9229 on clean data and 1.0015 on noisy data. Although the hybrid approach required longer 

training times and higher memory usage, it remained stable and effective in reducing 

transcription errors. These findings suggested that the hybrid method was an optimal solution 

for Indonesian speech recognition in various acoustic conditions. 
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1. Introduction 

ASR was a branch of deep learning that had been widely adopted [1]. ASR was the process of 

using algorithms in computing machines to modify, analyze, and recognize certain patterns in 

audio signals [2]. This technology enabled devices to recognize and transcribe human speech 

into text. ASR dealt with digital signal processing that was related to recognizing people based 

on their voice or speech [3]. In modern applications, ASR played a crucial role in enhancing 

user interactions, enabling hands-free control, and improving accessibility for individuals with 

disabilities. Its integration into virtual assistants, customer service automation, and real-time 

transcription services highlighted its growing significance in various industries.  

One of the important stages in developing an accurate ASR system was the feature 

extraction process, which involved retrieving important information from audio signals. 

https://doi.org/10.53623/gisa.v5i1.605
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Reference [4] discussed the most commonly used feature extraction techniques, such as Linear 

Predictive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCC), zero-crossing with 

peak amplitude (ZCPA), Discrete Wavelet Transforms (DWT), and RASTA. In this research, 

the ASR model was built using LSTM as the algorithm to handle sequential data such as speech 

signals. LSTM, as a type of Recurrent Neural Network (RNN), was effective in processing 

long-duration speech signals because it retained important information from long time 

sequences and overcame the vanishing gradient problem [5]. 

In addition, this study compared one non-feature extraction approach and three feature 

extraction techniques used in building ASR models: non-feature extraction, MFCC, RASTA-

PLP, and a combination of both (a hybrid approach). MFCC was known to be effective in 

capturing the frequency characteristics of sound and was commonly used in the field of speech 

recognition due to its high recognition accuracy, good discriminative ability, and low 

coefficient correlation, making it excellent for identifying sound frequencies [6]. However, 

MFCC had a major drawback—its poor robustness to noise. Even minor deviations in 

frequency bands could significantly alter MFCC coefficients, affecting recognition accuracy. 

RASTA-PLP, on the other hand, combined the RASTA technique with the PLP method to 

increase the robustness of PLP features. It was known to be effective in reducing the influence 

of noise and environmental variations that often occurred when audio recordings were made in 

non-ideal conditions, making RASTA-PLP superior in handling noise [6, 7]. 

In this research, a hybrid approach was applied to feature extraction by combining the 

advantages of MFCC and RASTA-PLP. MFCC offered lower complexity, high recognition 

accuracy, and strong performance in identifying voice frequencies, while RASTA-PLP was 

effective in reducing noise and helped mitigate temporal distortion caused by the recording 

environment. Thus, the hybrid feature combination (MFCC & RASTA-PLP) was expected to 

improve ASR performance under noisy environmental conditions, despite potentially 

increasing the complexity of the feature extraction process. Therefore, this study aimed to test 

whether the hybrid approach could provide significant improvements in the context of 

Indonesian language speech recognition. 

2. Materials and Methods 

This section described the key components used to develop an ASR system for Indonesian 

speech recognition. The system applied the LSTM technique to transcribe speech into text 

accurately. The components used in this research included feature extraction using MFCC and 

RASTA-PLP, and the performance of the ASR model was evaluated using CER and WER. 

2.1. Speech recognition.  

Speech Recognition, also known as speech-to-text, was a technology that enabled the 

identification of spoken words and converted acoustic signals into written text. A speech 

recognition system usually consisted of modules such as acoustic-related models, language-

related models, decoders, and acoustic feature extraction processing modules [8]. The working 

principle of the speech recognition system was to collect the characteristic information of the 

speech model, use training or other methods to construct an acoustic model, adapt it to the 

speech model, and use scientific algorithms to construct an acoustic information model. ASR 

was defined as the process of translating and transcribing spoken language using acoustic input 
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and algorithms [9]. ASR technology had been successfully integrated into computer-aided 

interpretation tools with high precision and low latency, further expanding its scope of 

application [10]. The results of this identification process could be displayed in written form 

or used by technological devices as commands to perform various tasks [11]. ASR continued 

to evolve with a wide range of practical applications, from virtual assistants to communication 

aids for people with disabilities, and contributed significantly to human-machine interaction.. 

2.2. Mel-frequency cepstral coefficients. 

Mel-Frequency Cepstral Coefficients (MFCC) was one of the most widely used feature 

extraction methods in the field of ASR [7]. It represented sound signals in the frequency domain 

based on human auditory perception. The main purpose of the MFCC feature extraction method 

was to mimic the human ear [6, 12], so MFCC was designed to capture how humans heard at 

various frequencies more accurately than other methods such as LPC, PLP, and others. Figure 

1 illustrated the step-by-step process of MFCC feature extraction. 

 
Figure 1. Flow of MFCC feature extraction. 

Definition of each stage in the MFCC feature extraction process: Pre-emphasis: 

Enhancing high-frequency components to improve signal quality; Framing: Dividing the signal 

into smaller time frames for analysis; Windowing: Applying a Hamming window to minimize 

spectral leakage; Fast Fourier Transform (FFT): Converting the time-domain signal into a 

frequency-domain representation; Mel Filter Bank: Mapping the frequency spectrum onto a 

Mel scale, which better represents human auditory perception; Discrete Cosine Transform 

(DCT): Reducing data dimensionality to obtain the final MFCC coefficients. 
The discretization process (Continuous to Discrete) converts a continuous-time audio 

signal x(t) into a discrete-time signal x[n] through sampling at specific time intervals. This 

discretization was performed according to the sampling rate, which determined how often the 

continuous signal was sampled to form a discrete signal. This discrete signal x[n] was then 

used as input for the pre-emphasis stage, where the high-frequency components were amplified 

to reduce the damping effect and improve the quality of features in the sound signal processing 

[13]. Equations (1) and (2) represented the processes involved in this discretization. 

𝑥(𝑡) = 𝐴 𝑐𝑜𝑠(𝑤0𝑡 + ∅)                                                 (1) 

The sampling process is performed, resulting in x[n] 

𝑥[𝑛] = 𝐴 𝑐𝑜𝑠(𝛺0𝑛 + ∅)                                                 (2) 

The results were included in the pre-emphasis stage of both MFCC and RASTA-PLP. At 

this stage, the sound signal passed through a filter that strengthened the high-frequency 

components to compensate for the signal at lower sound frequencies. This process produced 

y[n] which emphasized the high-frequency components. The pre-emphasis calculation resulted 

in the signal y[n]. Once this value was obtained, y[n] was segmented into several frames or 
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smaller time windows during the framing stage. The calculation performed during the pre-

emphasis stage is shown in Equation (3). 

𝑦[𝑛] = 𝑥[𝑛] − 𝛼 ⋅ 𝑥[𝑛 − 1]                                             (3) 

Where x[n] is audio signal, α is pre-emphasis coefficient (in this research we used 0.97), y[n] is 

the result of pre-emphasis calculation, and n is index or position of the sample in the signal. 

After the pre-emphasis calculation, the resulting signal was used in the framing stage, 

where it was divided into smaller segments (frames) to ensure local stationarity. The equation 

that was applied to the signal after it had been segmented into frames is shown as follows: 

𝑦𝑘[𝑛] =  𝑥[𝑘 .  𝐿 + 𝑛]                                                (4) 

Where x[n] is audio signal, K is number of frames, N is frame length, L is steps per frame, n is 

Index or position of the sample in the signal. 

The purpose of the framing stage was to maintain the stability of the signal by preventing 

information loss when the signal was extended. As a result, the output of the framing stage 

consisted of signal segments that were processed individually in the subsequent stage. Each 

frame or segment that had been extracted was then passed through the windowing stage, where 

it was multiplied by a windowing function w[n]w[n]w[n] to reduce spectral leakage. In this 

research, the Hamming function was used as the windowing function. Windowing was 

necessary to reduce discontinuities at the edges of each frame, to prevent leakage effects during 

the Fourier Transform, and to attenuate the signal at the frame's edges while emphasizing the 

center. The equation used in the windowing stage is presented below: 

𝑤[𝑛] = 0.54 − 0.46 ⋅ 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁−1
)                                       (5) 

The windowing result of the signal: 

𝑦𝑘
′ [𝑛] = 𝑦𝑘[𝑛] ⋅ 𝑤[𝑛]                                                 (6) 

Where 𝑤[𝑛] is the windowing function, 𝑦𝑘[𝑛] is the result of the framing, and N is frame length. 

After the windowing process, the results from this stage were used as input for the FFT 

(Fast Fourier Transform) stage. The signal in each frame was transformed using the FFT to 

obtain a spectral representation of the signal, which depicted the intensity at various frequencies. 

The FFT process was applied to each frame of the windowing result, converting the time domain 

into the frequency domain. This produced x[k]x[k]x[k], which represented the frequency 

components of the signal. Equation (7) shows the calculation performed at the FFT stage, as 

follows: 

𝑋[𝑘] = ∑ 𝑦𝑘
′ [𝑛]

𝑁−1

𝑛=0
⋅ ⅇ−𝐽2𝑘𝜋𝑚𝑛∕𝑁                                     (7) 

Where 𝑋[𝑘] is the windowing function, 𝑚 is filter index Mel, 𝑛 is MFCC coefficient index, and 

𝑁 is frame length. 

Next, the process proceeds to the Mel Frequency Transform stage, where the frequency 

spectrum generated by the FFT is converted into a Mel scale, which is based on how the human 

ear responds to different frequencies. Since the human ear is more sensitive to low frequencies 

than high frequencies, the Mel scale emphasizes low frequencies and provides finer resolution 

at lower frequencies. The equation that can be written is as follows: 
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𝑓𝑚𝑒𝑙 = 2595 .  log10(1 +
𝑓

700
)                                             (8) 

Finally, at the last stage, the Discrete Cosine Transform (DCT) is performed to reduce the 

data dimensions and eliminate redundancy in the frequency data. The output from the Mel filter 

is used in the DCT stage, and as a result, the MFCC coefficients are obtained, which represent 

the key features of the audio signal in a more compact form. Equation (9) shows the calculation 

performed at the DCT stage, as follows: 

𝐶𝑛 = ∑ 𝑙𝑜𝑔 (𝑆𝑚)𝑀
𝑚=0 ⋅ 𝑐𝑜𝑠 [𝑛 ⋅ (𝑚 − 0.5) ⋅

2

𝑀
]                               (9) 

2.3. Relative spectra–perceptual linear prediction. 

RASTA-PLP is a feature extraction method introduced to improve robustness against noise 

and distortion in changing environments. This method is based on the premise that the temporal 

characteristics of the audio signal environment differ from the temporal characteristics of the 

audio signal itself. RASTA-PLP combines the RASTA technique with the PLP method to 

enhance the robustness of PLP features. By applying band-pass filtering to each frequency sub-

band of the speech signal, this approach reduces the effects of channel mismatch between the 

training and testing environments, while also smoothing short-term sound variations and 

eliminating constant offsets in the speech channel [6]. This process involves modifying the 

spectral amplitude using a nonlinear compression transformation, followed by filtering the 

temporal trajectory of each transformed spectral component. The next step simulates the 

auditory power law, and finally, the model spectrum is calculated for all poles, as in the 

conventional PLP method. The flowchart below provides an overview of the steps in the 

RASTA-PLP method. 

 
Figure 2. Flow of RASTA-PLP feature extraction. 

The key stages in the RASTA-PLP process consist of: Pre-emphasis and framing: This step 

boosts high-frequency components and divides the signal into frames, similar to the MFCC process; 

Short-Time Fourier Transform (STFT): Converts time-domain signals into their corresponding 

frequency-domain representation; Critical Band Analysis: Uses a Bark-scale filter to simulate human 

auditory perception; RASTA Filtering: Reduces temporal fluctuations and eliminates noise artifacts; 

Cepstral Domain Conversion: Transforms the frequency-domain features into a more compact and 

efficient representation. 

As shown in Figure 2, the initial stages of RASTA-PLP feature extraction are similar to 

those of the MFCC process, with the steps including pre-emphasis, framing, and windowing. 

These stages are crucial before entering the core process of RASTA-PLP feature extraction. 

After the windowing process is complete, the results are further processed using the Short-
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Time Fourier Transform (STFT). At this stage, the STFT is applied to calculate the Discrete 

Fourier Transform (DFT) on each signal frame, which serves to transform the signal from the 

time domain to the frequency domain. This process produces a frequency spectrum that 

describes the distribution of energy across various frequencies for each specific time interval 

[13]. The following equation illustrates the DFT calculation applied to each signal frame using 

STFT. 

𝑋𝑚[𝑘] = ∑ 𝑦𝑘
′ [𝑛]

𝑁−1

𝑛=0
⋅ ⅇ−𝐽

2𝜋𝑘𝑛

𝑁                                        (10) 

Where 𝑦𝑘
′ [𝑛] is the result of signal windowing, 𝑁 is frame length, 𝑚 is filter index Mel, and 𝑘 

is index frequency. 

Then, the calculation results from the DCT stage were used as input for the next stage, 

the Critical Band Analysis stage. This stage served to simulate human auditory perception by 

using a Bark filter band. This filter was used because it better reflected the way the human ear 

processed sound, focusing on the critical bands that underlie human hearing. The following is 

the energy calculation process performed at the Critical Band Analysis stage. 

𝐸[𝑚] = ∑ |𝑋𝑚[𝑘]|2𝑁/2

𝑘=0
⋅ 𝐻𝑚[𝑘]                                    (11) 

Where 𝐻𝑚[𝑘] is filter response for the M band, and 𝐸[𝑚] is the energy generated in the band. 

In the next stage, the results of the Critical Band Analysis process were used to model the 

non-linear nature of human hearing in response to sound intensity. The spectral amplitude was 

then compressed logarithmically, with the logarithm helping to normalize the sound energy 

range. The equation that was calculated at this stage is as follows: 

𝐸𝑙𝑜𝑔[𝑚] = log(𝐸[𝑚])                                               (12) 

After the results were produced, the RASTA filtering stage was carried out to smooth out 

rapid changes, remove noise, and retain important information, ensuring that the result of this 

process produced filtered critical band energy. A band-pass filter was applied to the logarithmic 

signal to ensure that only relevant frequency information was retained. Equation (13) represents 

the calculation process carried out at the RASTA filtering stage as follows: 

𝑌[𝑚] =
𝐸𝑙𝑜𝑔[𝑚]

1+
𝛥2

𝐸𝑙𝑜𝑔[𝑚]

                                                 (13) 

After the RASTA filtering results were obtained, they were processed to adjust the energy 

at various frequencies in accordance with the sensitivity of human hearing to certain 

frequencies, typically around 1 kHz to 5 kHz. This process gave more weight to frequencies 

that are more sensitive to the human ear, resulting in a spectral representation that was closer 

to auditory perception. The results were then processed with the intensity loudness power law, 

where the signal intensity was mapped based on the non-linear relationship between physical 

intensity and perceived loudness. The process results were then processed in the inverse 

logarithm stage, which served to return the modified spectrum to a linear form. The following 

is the calculation equation for the inverse logarithm stage process. 

𝐸𝑙𝑖𝑛𝑒𝑎𝑟[𝑚] = exp(𝑌[𝑚])                                               (14) 
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After the inverse logarithm stage, the process continued to autoregressive modeling. At 

this stage, an autoregressive model was used to represent the power spectrum at the output of 

the Bark filter, using the LPC technique. This stage served to reduce the spectral information to 

a small number of parameters that described the main frequency patterns. The signal was 

modeled as an autoregressive model for linear predictor coefficients, which were then further 

processed at the Cepstral Domain Transform stage. The following is the equation for the 

autoregressive modeling stage. 

𝐸𝑙𝑖𝑛𝑒𝑎𝑟[𝑚] = ∑ 𝑎𝑝
𝑃

𝑝=1
𝐸𝑙𝑖𝑛𝑒𝑎𝑟[𝑚 − 𝑝]                                   (15) 

Where is 𝑎𝑝 is autoregressive coefficient (Sum of LPC coefficients), 𝑃 is order of the 

autoregressive model, 𝑝 is autoregressive coefficient index. 

This transformation was done to convert LPC coefficients to the cepstral domain, or from 

the frequency domain to the cepstral domain, resulting in cepstral coefficients or final features. 

The following is the calculation or formula for the cepstrum coefficient at the Cepstral Domain 

Transform stage to obtain the RASTA-PLP feature. 

𝑐𝑝 = 𝑎𝑝 +  ∑ (
𝑘

𝑝
)

𝑝−1

𝑘=1
 𝑐𝑘𝑎𝑝−𝑘                                        (16) 

Where 𝑐𝑝 is the p-th cepstral coefficient, 𝑝 is index of autoregressive or cepstral coefficients, 

and 𝑘 : frequency index in the frequency domain. 

The coefficient results obtained from the Cepstral Domain Transform stage were used as 

the final feature of RASTA-PLP, which included important information for speech recognition. 

2.4. Evaluation with CER & WER. 

WER and CER are performance metrics for automatic spontaneous speech recognition. WER 

measured the performance of predicting the correct order of recognized words, while CER was 

calculated based on the phoneme order. Both metrics were derived from the Levenshtein 

Distance formula and were useful for evaluating improvements to acoustic models. WER was 

used to measure the ratio of prediction errors at the word level. A good WER value was close 

to zero. The WER formula [14] was expressed in the following equation: 

𝑊𝐸𝑅 =
𝑆+𝐼+𝐷

𝑁
                                                     (17) 

The CER is a metric similar to WER but applied at the character level. CER measures 

the ratio of prediction errors at the character level and provides finer details compared to WER. 

The CER equation is as follows: 

𝐶𝐸𝑅 =
𝑆+𝐼+𝐷

𝑁
                                                     (18) 

With (S) as the number of substitutions, i.e., words/characters that were incorrectly 

recognized as other words; (I) as the number of insertions, i.e., words/characters that should 

not have been present but were recognized by the system; and (D) as the number of deletions, 

i.e., words/characters that should have been present but were not recognized by the system. 

The total number of words/characters in the correct reference transcription was denoted by (N). 
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Evaluation using WER and CER made it possible to comprehensively assess the performance 

of the ASR model and identify areas that required improvement in the model. These two 

metrics provided different but complementary perspectives when measuring the accuracy of an 

ASR system. 

3. Results and Discussion 

In this section, the results of the feature extraction preprocessing process, as well as the ASR 

model training analysis, will be discussed. The discussion begins by evaluating the results of 

feature extraction from the audio signal, which includes feature representation using MFCC, 

RASTA-PLP, and hybrid approaches. This process aimed to show the results of transforming 

the raw audio signal into a more informative form so that the model could better recognize 

sound patterns. Next, the training analysis of the ASR model was discussed to evaluate the 

performance of the model based on the extracted features. The results from this stage provided 

insights into the effectiveness of various feature extraction techniques in improving the 

accuracy and robustness of the model in handling speech signal variations. 

3.1. Discussion of feature extraction preprocessing results. 

The audio data was represented as a waveform in the time domain prior to preprocessing. 

Figure 3 shows the amplitude of an audio signal against time, known as a time-domain 

waveform representation. This preprocessed data contained information that only included the 

amplitude of the signal against time, without separating the energy contributions of the various 

frequencies. This representation was only useful for understanding the general pattern of the 

signal, but did not provide insight into the underlying frequency characteristics. For this reason, 

preprocessing was performed to help simplify the data by extracting key features from the raw 

audio signal, thus obtaining information that was more relevant to the speech recognition task 

and better equipped to be utilized by the ASR model. 

 
Figure 3. Data before preprocessing. 

The results of feature extraction preprocessing using the MFCC technique were 

represented in Figure 4, which shows the visual representation of the MFCC. In the 

visualization, the horizontal axis represented time (in seconds), while the vertical axis 

displayed the MFCC coefficients. The colors in the figure represented the intensity or energy 

of each coefficient at a given time, with the color scale on the right indicating the range of 

values in decibels (dB). The 13 MFCC coefficients obtained per frame were extracted to be 

used as input to the LSTM-based ASR model. This MFCC visualization helped to understand 
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how audio features were processed and ensured that the model input contained an optimal 

representation of the sound. 

 
Figure 4. Visualization results of preprocessing on mfcc feature extraction. 

The results of the feature extraction preprocessing using the RASTA-PLP technique were 

visualized in Figure 5, which represented the audio features resulting from processing the 

sound signal with the RASTA-PLP technique. In the graph above, the horizontal axis 

represented time (seconds), and the vertical axis represented the RASTA-PLP coefficients at 

different time points. The colors shown reflected the intensity values of the coefficients in 

decibels (dB), with the color scale on the right indicating their numerical values. Red indicated 

high intensity, while blue indicated low intensity. The coefficient results displayed the 

numerical values of the base coefficients for a particular frame (in this case, the 8th frame). 

The number of coefficients generated from each frame in the application of RASTA-PLP 

feature extraction was 13, which were later used as input data in the LSTM model to study the 

temporal patterns and long-term relationships between the coefficients. 

.  

Figure 5. Visualization of preprocessing results on rasta-plp feature extraction. 

Figure 6 illustrated the feature representation obtained from the hybrid approach, where 

the combined MFCC and RASTA-PLP features resulted in a more informative and robust 

spectral representation. The hybrid coefficients, which were visualized in the figure with 

feature dimensions on the y-axis and time frames on the x-axis, enhanced the feature space by 

capturing both fine spectral details from MFCC and noise-resistant temporal characteristics 
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from RASTA-PLP. Each row in the figure represented the combined value of both feature 

types, including detailed spectral information of the audio signal, with a total of 26 coefficients. 

These hybrid features were then used as numerical inputs for the LSTM model, where each 

time frame was processed to capture both short-term and long-term relationships in the 

sequential data, ultimately improving phoneme discrimination and robustness against 

environmental noise. 

 
Figure 6. Visualization of preprocessing results on hybrid feature extraction. 

3.2. ASR model training analysis results. 

Table 1. Summary of noise sStatistics and data quality (in percent). 

 Noise_percentage Signal_clarity Quality_score 

Count 5041.00 5041.00 5041.00 

Mean 0.09 99.91 99.82 

Std 0.19 0.19 0.37 

Min 0.00 98.76 97.51 

25% 0.00 99.93 99.86 

50% 0.00 100.00 100.00 

75% 0.07 100.00 100.00 

Max 1.39 100.00 100.00 

ASR models with MFCC, RASTA-PLP, Hybrid, and Non-feature extraction techniques 

were trained using two different types of data: data with low noise and data with added 

Gaussian Noise. This approach aimed to produce an analysis of the ASR model's performance 

on clean sound (without interference) and sound affected by noise. The Signal-to-Noise Ratio 

(SNR) is the ratio between the strength of a useful signal and the strength of noise in a signal. 

The higher the SNR value, the clearer the signal and the lower the noise, indicating good audio 

quality [15]. For example, in the dataset, the first data set had an SNR of 38.43 dB, which 

indicated that the received signal was much stronger than the noise. The original data used were 

analyzed as a whole, resulting in the noise summary in Table 1. The overall average noise 

percentage was 0.09%, with the minimum noise in the dataset being 0.00% and the maximum 

noise being only 1.39%. This ensured that the dataset had clean and high-quality sound. The 

following are the results of the noise analysis summary performed on all data. The results of 

the training performed on the ASR models with the non-feature extraction approach and the 

MFCC, RASTA-PLP, and Hybrid feature extraction approaches showed variations in the CER, 
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WER, and loss levels for each method. The results obtained highlighted the performance of 

each model that was trained. The following are the results of ASR model training based on 

each feature extraction and non-extraction approach. 

 
Figure 7. Graph of CER evaluation metrics in the ASR model. 

Based on the CER graph in Figure 7, the performance of the four models—MFCC, 

RASTA-PLP, Hybrid, and non-feature extraction methods—during the training process, with 

100 training epochs, is shown. From the graph, it can be seen that the non-feature extraction 

method had the highest CER value, maintaining a stable trend until the end of training. The 

model using the RASTA-PLP method also showed a relatively high error rate. This indicates 

that the models with the non-feature extraction and RASTA-PLP methods had difficulty 

correcting the prediction errors of the characters. ASR models using MFCC and the Hybrid 

method demonstrated a more significant decrease in CER as the epochs increased, showing an 

improvement in error correction. Notably, the Hybrid method achieved the lowest CER value, 

which indicates that the combination of MFCC and RASTA-PLP features helped the model 

recognize character patterns more effectively, leading to higher accuracy results. 

 
Figure 8. Graph of WER evaluation metrics in the ASR model. 

In Figure 8, the WER shows the error rate in word recognition for the four models trained 

with the original data. The graph reveals that the ASR model with the non-feature extraction 

method had a relatively stable trend until the end of training. In contrast, the ASR model with 

the RASTA-PLP method exhibited instability and did not show a decrease in the word error 

rate, resulting in a higher WER compared to the other methods. Other methods, such as MFCC, 

showed a significant improvement in performance with a lower error rate compared to the non-

feature extraction and RASTA-PLP methods. On the other hand, the Hybrid method displayed 
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a very significant decrease in WER compared to the other methods. This indicates that the use 

of combined MFCC and RASTA-PLP features made a positive contribution to improving word 

recognition accuracy, with fewer errors compared to other methods. 

 
Figure 9. Graph of loss evaluation metrics in the ASR model. 

The last graph, shown in Figure 9, is the loss graph, which illustrates how well the model 

minimizes the prediction error during the training process. In the trained models, the loss 

pattern decreases significantly and consistently in the ASR models with the MFCC and Hybrid 

methods throughout the training process. It is noted that the Hybrid method has the lowest loss 

value at the end of the epochs, which indicates the ability of the ASR model with the Hybrid 

method to reduce prediction errors more effectively. The pattern in the Hybrid method shows 

that the combination of the single feature extraction methods, MFCC and RASTA-PLP, had a 

positive impact on the learning process of the ASR model. On the other hand, it can be seen 

that the non-feature extraction method has a relatively high loss value with fairly stable results 

during the training process, indicating that the model was less able to learn effectively from the 

training data. The RASTA-PLP method also shows a very high loss with a fluctuating trend in 

the graph, resulting in a higher loss rate at the end of training compared to the other methods. 

Based on research [16], Gaussian noise is added using two parameters: mean and 

variance. In this study, the mean parameter is set to 0, while the variance is set to 1, resulting 

in an SNR of 13.13 dB when added to the same sample data used in the original data. Gaussian 

noise applied to all data resulted in a noise summary of 6.83% for the average noise percentage, 

with a minimum noise percentage of 6.34% and a maximum noise percentage of 7.11%. The 

complete analysis of the noise summary for the dataset after adding Gaussian noise can be seen 

in Table 2. This analysis shows that the dataset with Gaussian noise has significant noise 

variability. The following is a summary of the noise analysis for all datasets after adding 

Gaussian noise. 

Table 2.  Summary of noise statistics and data quality with Gaussian noise (in percent). 
 noise_percentage signal_clarity quality_score 

Count 5041.00 5041.00 5041.00 

Mean 6.83 93.17 86.33 

Std 0.08 0.08 0.16 

Min 6.34 92.89 85.77 

25% 6.79 93.11 86.23 

50% 6.84 93.16 86.32 

75% 6.89 93.21 86.42 

Max 7.11 93.66 87.32 
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The data that has been added with Gaussian noise is used when training the ASR model 

with the Non-extraction approach, as well as the MFCC, RASTA-PLP, and Hybrid extraction 

features. These methods show differences in CER, WER, and Loss levels for each approach. 

The following is a graph of the ASR model training process based on each feature extraction 

and non-feature extraction method. 

 
Figure 10. Graph of CER evaluation metrics with noise data in the ASR model. 

Based on Figure 10, the graph shows the training performance of the four models: MFCC, 

RASTA-PLP, Hybrid, and the non-feature extraction methods in reducing CER during the 

training process with data added with Gaussian noise, using 100 epochs of training. From the 

graph, in general, the CER trend decreases as the epoch increases, but the non-feature 

extraction method experiences an increase in the CER rate after the 40th epoch. This suggests 

that the performance of the model with non-feature extraction has difficulty recognizing 

characters [17]. The ASR model with the Hybrid method shows a steady downward trend 

compared to the other methods, with a consistent decrease in CER rate, indicating that the 

Hybrid method is able to effectively recognize characters throughout the model training. The 

ASR model with the RASTA-PLP method has the second-lowest CER rate after the Hybrid 

method, indicating that the RASTA-PLP method performs relatively well at recognizing 

characters in noisy data, but not as well as the Hybrid method. On the other hand, the ASR 

model with the MFCC method has the highest CER error rate compared to the other methods, 

which indicates that this method is less effective in reducing character errors, especially in data 

with Gaussian noise. 

 
Figure 11. Graph of WER evaluation metrics with noise data in the ASR model. 
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The WER graph in Figure 11 shows the error rate in word recognition for the four models 

trained with data that has been added with Gaussian noise, illustrating the performance of the 

ASR model for each method [18]. Similar to CER, the WER trend also shows a decrease, 

although the Non-feature extraction method experiences an increase after the 20th epoch, 

making it the highest word recognition error rate compared to the other methods. The trend for 

the RASTA-PLP method is slightly similar to the Hybrid method, where after the 80th epoch, 

the RASTA-PLP method experiences a slight decrease, indicating that this method is fairly 

effective in reducing word recognition errors, although not better than the Hybrid method. The 

Hybrid method outperforms the other methods in word recognition, with the WER rate for the 

Hybrid method remaining quite stable throughout the training period, thus showing the best 

performance among all the methods trained. 

 
Figure 12. Graph of loss evaluation metrics with noise data in the ASR model. 

In Figure 12, the loss graph illustrates how well the model minimizes the prediction error 

during the training process. At the beginning of training, all methods show high loss values, 

but these values decrease dramatically in the first few epochs. However, the trend of the loss 

metric is quite volatile across all methods, indicating instability in the training process. The 

Hybrid method performed quite well, with the second-lowest loss value after the RASTA-PLP 

method. The MFCC method has the highest loss value, which makes it the method with the 

highest loss compared to the other methods, indicating a lack of stability in the learning process 

[19]. The RASTA-PLP method shows a similar fluctuating trend as the other methods but has 

the lowest loss value compared to the others. This trend shows that although all methods 

experience fluctuations in loss value during training, the RASTA-PLP method still maintains 

the lowest loss value compared to the other methods. 

Based on the ASR model training conducted on the Non-feature extraction, MFCC, 

RASTA-PLP, and Hybrid approach methods in two different data conditions—namely the 

original data without added noise and data with added Gaussian noise—the ASR model 

performance shows relatively similar results. On the original data without the addition of noise, 

the ASR model with the Hybrid method shows a significant and consistent pattern of 

decreasing error rates on each metric, such as CER, WER, and Loss, indicating an improvement 

in performance over the training process. Meanwhile, on data with the addition of Gaussian 

noise, the Hybrid method still shows the best performance, with more stable CER and WER 

reductions than other methods, although the loss value is not always the lowest. Overall, the 

Hybrid method remains the best choice for producing a more stable and accurate ASR model, 

both on the original data and data with added noise. 
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The ASR model, trained in both conditions, was then evaluated using validation data to 

show that the ASR model with the Hybrid method remains superior to the other methods. This 

evaluation involves several important metrics, namely Character Error Rate, Word Error Rate, 

and loss, which reflect the error rate in character and word prediction on validation data using 

original data without added noise and data that has been added with Gaussian noise [20]. 

Additionally, the training duration, trainable parameters, and memory usage were analyzed for 

each method as part of the model efficiency assessment. The results of the model performance 

evaluation with the validation data are shown in Table 3 and Table 4. 

Table 3. Results of performance evaluation of the ASR model with data validation. 
100 Epoch Non Ekstraksi MFCC RASTA-PLP Hybrid 

CER 0.9586 0.5590 0.9002 0.5245 

WER 1.0065 0.9538 1.0359 0.9229 

Loss 182.4409 80.0591 280.1849 78.1123 

Training Duration 7008 Seconds 

(1 Hour 56 Minutes) 

11087 Seconds 

(3 Hour 4 Minutes) 

10396 Seconds 

(2 Hour 53 Minutes) 

10485 Seconds 

(2 Hour 54 Minutes) 

Trainable Parameters 2.955.297 2.839.073 2.839.073 2.845.729 

Memory Usage 13113.41 MB 7802.06 MB 7846.09 MB 8275.69 MB 

Based on Table 3, regarding the performance evaluation results of the ASR model with 

validation data without added noise, it shows that the Hybrid method is superior to the other 

methods. The CER for the Hybrid method recorded the lowest value of 0.5245, confirming that 

this method is able to recognize characters with greater precision compared to both feature 

extraction and non-feature extraction methods. Likewise, in terms of WER, the Hybrid method 

recorded the lowest value of 0.9229, indicating that this method is more effective in 

recognizing whole words and producing more accurate transcriptions compared to other 

methods. In terms of loss, the Hybrid method also shows the best performance with a value of 

78.1123, which indicates that the model can adapt to the original data (or data without noise) 

and is able to learn acoustic patterns better than the other methods. 

On the other hand, in terms of training duration, the Hybrid method took 10,485 seconds 

(2 hours and 54 minutes), slightly longer than the single feature extraction of RASTA-PLP but 

more efficient than the single feature extraction of MFCC. In terms of memory usage, the 

Hybrid method consumed 8275.69 MB, which is higher than the single feature extraction 

methods. The relatively high memory consumption in the Hybrid method is due to the process 

of combining two feature extraction techniques, namely MFCC and RASTA-PLP, which 

results in a richer and more informative feature representation [20]. Despite requiring more 

time and memory, the superior performance in CER, WER, and loss makes the Hybrid method 

the best choice for modeling ASR in a noiseless scenario. 

Table 4. Results of evaluating the performance of the ASR model with noise added data validation. 

100 Epoch Non Ekstraksi MFCC RASTA-PLP Hybrid 

CER 0.9149 0.9249 0.9033 0.8811 

WER 1.0355 1.0191 1.0063 1.0015 

Loss 178.3424 172.5249 165.2172 163.5806 

Training Duration 6727 Seconds 

(1 Hour 52 Minutes) 

10292 Seconds 

(2 Hour 51 Minutes) 

6422 Seconds 

(1 Hour 47 Minutes) 

16692 Seconds 

(4 Hour 48 Minutes) 

Trainable Parameters 2.955.297 2.839.073 2.839.073 2.845.729 

Memory Usage 12565.00 MB 8189.54 MB 8439.76 MB 9159.19 MB 

Based on Table 4, regarding the performance evaluation results of the ASR model on 

Non-feature extraction, MFCC, RASTA-PLP, and Hybrid methods using validation data that 

has been added with Gaussian noise, it can be seen that the performance of the ASR model 
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using the Hybrid method results in the lowest CER of 0.8811, indicating that this method is 

more robust in handling noise at the character level. In WER, this method recorded the lowest 

value of 1.0015, showing that the Hybrid method is more effective at capturing word context 

compared to other methods. Additionally, the loss assessment for the Hybrid method recorded 

the lowest value of 163.5806, which indicates that the model is more stable and capable of 

learning patterns from data with Gaussian noise, resulting in better generalization on the 

validation data. 

In terms of training duration and memory usage, the Hybrid method required the longest 

training time, approximately 16,692 seconds (4 hours and 48 minutes), which is significantly 

higher than the other methods. This is understandable because the Hybrid feature extraction 

process involves combining the MFCC and RASTA-PLP techniques, enriching the acoustic 

representation but increasing computational complexity. In terms of memory usage, the Hybrid 

method also consumed the most memory, with 9159.19 MB, indicating that although this 

method provides the best performance, computational cost and resource usage are challenges 

that need to be considered. 

Based on the performance evaluation results of the ASR model on the original dataset 

and the dataset with Gaussian noise added, the Hybrid method has proven to produce the best 

performance under both conditions. This success comes from combining two feature extraction 

techniques, MFCC and RASTA-PLP. As indicated in research [7], each single extraction 

feature has its own advantages. The advantage of using MFCC extraction features is the 

spectral representation that aligns with human auditory perception, which provides good 

accuracy on noise-free data. On the other hand, RASTA-PLP is more resistant to noise and 

better at capturing temporal patterns, making it adaptive to changes in acoustic signals. By 

combining these two techniques, the Hybrid method creates a feature representation that 

leverages the strengths of each approach. 

The most influential stages in the Hybrid method that contribute to a richer and deeper 

acoustic representation are the Mel Filter Bank stage of MFCC and the RASTA Filtering stage 

of RASTA-PLP. The Mel Filter Bank of MFCC helps scale the frequencies in the mel domain, 

which resembles human auditory perception of sound, making relevant acoustic information 

more prominent. Meanwhile, the RASTA Filtering stage of RASTA-PLP helps reduce low-

frequency components that are considered noise in the acoustic environment and adds 

robustness to temporal fluctuations and noise. 

The advantage of the Hybrid method lies in its ability to utilize the accurate frequency 

representation of MFCC and the noise suppression and adaptive temporal patterning of 

RASTA-PLP. This results in a more informative and rich acoustic representation [21]. The 

synergy of these two techniques allows the model to learn from more informative data, 

significantly improving the performance across CER, WER, and Loss metrics, both on the 

original data (without noise) and on data with Gaussian noise. This approach leads to a 

significant reduction in the error rate compared to both single extraction and non-feature 

extraction methods. 

4. Conclusions 

The hybrid approach effectively enhances feature representation, leading to improved ASR 

performance in both clean and noisy conditions. This supports the assertion that combining 

MFCC and RASTA-PLP provides a more robust and adaptive acoustic representation for 
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Indonesian speech recognition. The Hybrid method successfully combines the strengths of 

MFCC in capturing voice frequency characteristics with the noise resistance advantages of 

RASTA-PLP. The evaluation results show that the Hybrid method achieves lower CER and 

WER, along with a smaller loss, compared to other methods, both in clean data conditions and 

data with added Gaussian noise. Although Hybrid requires more time and memory during the 

training process, the results demonstrate improved stability and accuracy of the ASR model. 

The combination of both techniques allows the ASR model to utilize a richer and more 

informative spectral representation, improving reliability in speech recognition. Evaluation 

using CER, WER, and loss metrics confirms that the Hybrid method remains the best choice, 

despite challenges in computational efficiency. By increasing the number of epochs, it is 

expected that the Hybrid-based ASR model will further optimize the learning process, reduce 

the error rate, and improve generalization across a wider variety of sounds and environments. 

Additionally, increasing the number of epochs may enhance the model’s stability, ensuring 

more consistent performance in recognizing speech characteristics under both clean and noisy 

conditions. 
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