

93

Research Article

Volume 5(1), 2025, 93–105

https://doi.org/10.53623/gisa.v5i1.581

Classification of Metal Surface Defects Using

Convolutional Neural Networks (CNN)

Dhika Wahyu Pratama1, Muchammad Ismail1, Restu Nurraudah1, Achmad Pratama

Rifai1*, Nguyen Huu Tho2

1Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
2Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

*Correspondence: achmad.p.rifai@ugm.ac.id

SUBMITTED: 7 January 2025; REVISED: 13 March 2025; ACCEPTED: 14 April 2025

ABSTRACT: Metal surface quality inspection is an important step in ensuring that products

meet predetermined industry standards. The manual methods used were often slow and prone

to errors, so more efficient solutions were needed. The application of Machine Learning (ML)-

based technologies, especially Convolutional Neural Networks (CNN), offered an innovative

approach to overcome these challenges. CNN had the ability to automatically extract visual

features from images with high accuracy, making it an effective tool in defect classification.

This research used several CNN architectures, including MobileNetV2 and InceptionV3, as

well as a model developed in-house, the K3 Model. Data augmentation, such as rotation and

lighting adjustments, was applied to increase variation in the dataset and aid the model in

generalization. The research results showed that the K3+Augmentation model achieved the

highest accuracy of 100% in testing, with a very low loss of 0.0009. While MobileNetV2

offered better training speed, K3+Augmentation showed superior performance in detecting and

classifying metal defects. These findings confirmed the potential of CNN in improving the

efficiency of quality inspection in modern industry.

KEYWORDS: Metal surface inspection; CNN; MobileNetV2; K3 model; InceptionV3;

augmentation

1. Introduction

Product quality was a very important aspect in the manufacturing process, both to maintain

product function and aesthetics. Therefore, quality inspection was a key step in ensuring that

products met the desired standards. This process included the inspection of various raw

materials, such as plastics, liquids, and metals, each of which had different risks of defects.

Metal products, for example, had a higher risk of defects due to reduced machine performance,

improper storage, and temperature fluctuations during production [1].

The main problems affecting the quality of metal products often stemmed from machines

not working optimally, causing defects in the final product. To reduce the number of defective

products, visual inspection was an important step. Manual methods were often inefficient and

prone to errors made by human operators. In this case, the application of Machine Learning

https://doi.org/10.53623/gisa.v5i1.581
mailto:achmad.p.rifai@ugm.ac.id

Green Intelligent Systems and Applications 5(1), 2025, 93–105

94

(ML)-based technology offered a better solution. By using ML, inspections could be carried

out automatically with high accuracy and in shorter times [2].

Several Convolutional Neural Networks (CNN) architecture models, such as

MobileNetV2 and InceptionV3, demonstrated superior performance in visual inspection tasks,

including flaw detection on metal surfaces. MobileNetV2, as a lightweight CNN model, was

designed for applications with limited computing resources, providing high efficiency without

sacrificing accuracy. This model used inverted residual blocks to reduce memory and

computational requirements, making it an ideal choice for performing visual inspection tasks

[3]. On the other hand, InceptionV3 relied on a modular architecture with multi-scale parallel

convolutions to extract complex features. This advantage made it capable of handling texture

variations on metal surfaces that were difficult to detect by traditional methods [4]. In a recent

study, Jiangyun et al. (2018) developed an improved YOLO model for surface defects detection

of steel strips. The model was used to detect six types of defects, namely scar, scratch,

inclusion, burr, seam, and iron scale. Additionally, the model was designed for real-time

detection, with an average inference time of only 0.012s to detect a strip surface image.

Apart from pre-trained models such as MobileNetV2 and InceptionV3, this research also

developed a special model called the "K3 Model." K3 Model was named after the group

members working on this model to overcome specific challenges in metal surface defect

inspection. Another model comparison involved adding data augmentation techniques (K3

Model + Augmentation). This model increased generalization by creating variations in the

training data. Augmentations such as rotation, flipping, and changing light intensity proved

effective in improving model performance on limited datasets [6].

This research focused on the multi-category classification of metal surface defects using

the NEU Surface Defect dataset, which came from the database

(https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database). This dataset

included six categories of defects: crazing, inclusions, patches, pitted surfaces, rolled-in scale,

and scratches, each of which had unique detection challenges [7]. By comparing several

models, namely MobileNetV2, InceptionV3, and self-developed models (K3 Model and K3

Model + Augmentation), this research aimed to evaluate the efficiency and accuracy in

detecting metal defects. The results obtained were expected to provide new insights into the

application of AI-based technology to improve the quality of manufactured products.

2. Methods

In this research, a Convolutional Neural Networks (CNN)-based architecture was used to

recognize patterns and classify visual data, by comparing its effectiveness using the transfer

learning method. The transfer learning technique applied involved pre-trained models such as

MobileNetV2 and InceptionV3, as well as testing special models designed in this research. The

process and steps for applying CNN to overcome this problem are explained in Figure 1, which

includes the feature extraction and classification stages using the model being tested.

2.1. Data collection.

Data collection is a systematic process of obtaining information from various sources, aimed

at supporting data-based analysis and decision making [8]. In the context of Machine Learning

(ML), data collection is a key stage that determines model quality [9]. This research uses

datasets available from the Kaggle database, a public data platform that provides a variety of

https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database

Green Intelligent Systems and Applications 5(1), 2025, 93–105

95

well-structured datasets for machine learning purposes [10]. To increase variation and

overcome dataset limitations, data augmentation techniques such as mirroring, rotation, and

lighting adjustment are applied [11]. This step is important to improve the generalization and

accuracy of the model. The dataset obtained via Kaggle was further explored with cleaning and

normalization to ensure relevance and quality of the data [12]. The dataset chosen is a dataset

in the form of images that will be processed and then classified based on the type of product

defect. The following are examples of images used in data processing in research. An overview

of the image data is available in Table 1.

Figure 1. Model working scheme.

Table 1. Six types of metal surface defect images.

Green Intelligent Systems and Applications 5(1), 2025, 93–105

96

The dataset obtained consisted of images with different classifications for each image.

The classification of the images was based on the form of product defects. These defects took

various forms, namely crazing, inclusions, patches, pitted surfaces, rolled-in scale, and

scratches. The dataset contained 1800 images, with 300 images for each classification, each

having a size of 200 x 200 pixels. In this study, the dataset was split into 1656 images (92%)

for the training dataset, 72 images (4%) for the validation dataset, and 72 images (4%) for the

test dataset. The images in the validation and test datasets were drawn from different specimens

than those in the training dataset to ensure the fairness of the testing procedures.

2.2. Image Augmentation.

Image augmentation is an important technique in deep learning to artificially increase data

variation, especially when the dataset is limited [6]. This technique helps prevent overfitting

and improves model generalization through transformations such as rotation, mirroring, and

color adjustment [13]. Complex methods like mixup and random erasing also contribute to data

variation [14]. Augmentation has been proven to be efficient in applications such as image

classification and object detection [15]. However, irrelevant transformations can significantly

alter image characteristics, confusing the model, so they need to be applied with caution [11].

To achieve optimal performance, deep learning models generally require large amounts

of data. This is essential to improve model quality and reduce the risk of overfitting. However,

obtaining large datasets is often hindered by several challenges, such as cost, time, and other

factors. To address this issue in image classification, image augmentation can be used to

increase the number of training images. During data augmentation, small random

transformations are applied to images without altering the main content or key features of the

image. Examples of these transformations include mirroring, resizing, and lighting

adjustments. Figure 2 shows several examples of images transformed through data

augmentation. However, the data augmentation process requires careful consideration to ensure

that the augmented data does not significantly differ from the original data. Excessive

transformations can lead to confusion in the model, making it difficult to understand the true

meaning of the image. This could result in the model making incorrect predictions.

Figure 2. Example of image transformation orientation given by augmentation [16].

In this study, random transformations were applied to each image in the training dataset.

This approach was adopted to ensure that the classification model being built is more robust,

enabling it to better handle varied training data, prevent overfitting, and improve its accuracy

when dealing with previously unseen images. For this research, with a total of 1656 images in

the training dataset, several augmentation techniques were applied to each image, as shown in

Table 2.

Green Intelligent Systems and Applications 5(1), 2025, 93–105

97

Table 2. Image augmentation parameters

Transformation Value

 Rotation 10°
 Zoom 0.2

 Brightness [0.8, 1.2]

 Horizontal Flip True

 Vertical Flip True

Table 2 presents the image augmentation parameters used for data processing. Several

indicators are included: Rotation, which involves randomly rotating the image by a maximum

of 10 degrees to make the model more robust to rotation; Zoom, with a value of 0.2, meaning

the image will be enlarged or reduced by up to 20% to address variations in object size in the

original data; Image Brightness, which is adjusted randomly between 80% and 120% of the

original value to make the model more resilient to lighting variations; Horizontal Flip, set to

True, which allows the image to be mirrored during augmentation; and Vertical Flip, indicating

that the image can be flipped vertically to provide a variety of vertical orientations.

2.3. Model architecture.

In this research, a simple architecture named K3 was developed, with the detailed architecture

shown in Figure 3. The K3 architecture is compared with two widely used architectures,

MobileNetV2 and InceptionV3, which are both transfer learning models. These two models

have been pre-trained using the ImageNet database to expedite the learning process, and they

were subsequently modified to address the specific challenges of this research. Google Colab

was used to conduct the model training, utilizing the available Tesla P4 GPU to accelerate the

training process.

Figure 3. K3 Architecture.

This research compared the K3 architecture with MobileNetV2 and InceptionV3, and

further evaluated the results after the K3 architecture was augmented with data. Table 3 below

shows the composition of the K3 architecture, along with the parameters used. Table 3 shows

the K3 Model Architecture and Parameters. The K3 model was developed to address specific

challenges in metal surface defect classification, while balancing accuracy, computational

efficiency, and generalization ability. This model is designed to handle image data with input

dimensions of 200x200 pixels.

The K3 model consists of four convolutional layers, each followed by a max pooling

operation. The decision to use four layers was based on empirical testing and a literature

Green Intelligent Systems and Applications 5(1), 2025, 93–105

98

review, where deeper architectures often improve feature extraction but may lead to overfitting

or increased training time. Shallower models with one or two layers failed to extract sufficient

hierarchical features, leading to poor defect classification, while deeper models with more than

four layers increased computational complexity without providing significant accuracy

improvements. The choice of four layers provided an optimal trade-off, effectively capturing

edge details, textures, and patterns characteristic of metal defects. Each convolutional layer in

K3 uses a 3×3 kernel size, a widely used setting in deep learning models such as VGG and

ResNet. This kernel size balances computational efficiency and feature extraction capability.

Larger kernels, such as 5×5 or 7×7, were tested but led to increased computational costs without

significant accuracy gains. Stacking 3×3 convolutions mimics the effect of larger receptive

fields while maintaining efficiency. Following each convolutional layer, a 2×2 max pooling

operation is applied to reduce dimensionality and retain critical features. Max pooling was

chosen over average pooling because it helps retain dominant defect features while reducing

noise. Average pooling was tested but blurred critical edge details, lowering classification

performance. The 2×2 window was selected as it provides a balance between feature reduction

and preserving spatial details.

Table 3. K3 architecture and parameters.

Layer Parameter

Convolution 1 32, 3, activation = ‘relu’,

input_shape = [200,200,3]

Max Pooling 2

Convolution 2 64,3, activation= ‘relu’

Max Pooling 2

Convolution 3 128, 3, activation= ‘relu’

Max Pooling 2

Convolution 4 256, 3, activation = ‘relu’

Max Pooling 2

Global Average Pooling -

Dense 512, activation= ‘relu’

Dropout 0.2

Dense Output 6, activation= ‘Softmax’

Before the dense layers, a global average pooling (GAP) layer is used to efficiently

summarize spatial features. GAP was chosen over direct flattening as it reduces overfitting by

minimizing the parameter count, improving model generalization. Empirical tests showed that

GAP improved classification performance over direct flattening, acting as a regularization

technique to ensure the model does not rely on localized patterns alone. The model includes a

fully connected dense layer with 512 neurons before the output layer. Lower values, such as

128 or 256, resulted in lower accuracy due to insufficient feature extraction, while higher

values, such as 1024, led to increased computational cost without proportional accuracy

improvements. The choice of 512 neurons provided the best balance of expressiveness and

efficiency. A dropout layer with a rate of 0.2 is applied before the final dense layer to prevent

overfitting. Higher dropout rates above 0.3 degraded the learning process, leading to slower

convergence, while lower dropout rates below 0.2 were insufficient to mitigate overfitting in

smaller datasets. The dropout rate of 0.2 was selected based on cross-validation results,

showing improved generalization.

ReLU (Rectified Linear Unit) activation is applied to all convolutional and dense layers,

except the output layer. ReLU prevents vanishing gradients, ensuring stable model training.

Other activations, such as Leaky ReLU and Swish, were tested, but ReLU showed the best

Green Intelligent Systems and Applications 5(1), 2025, 93–105

99

convergence speed. The output layer uses Softmax activation to convert logits into probabilities

for the six defect categories. The K3 model was designed considering the strengths and

limitations of existing architectures. MobileNetV2 provided high efficiency but slightly lower

accuracy, while InceptionV3 demonstrated strong feature extraction but was computationally

expensive. The K3 model was designed as a middle-ground approach for performance and

efficiency, and the augmented version, K3+Augmentation, achieved the highest accuracy but

required the longest training time. The design of the K3 model was optimized to achieve a

balance between depth and computational efficiency, ensuring effective feature extraction

without excessive training time. The choice of kernel size, pooling strategy, and activation

functions were made based on empirical results and theoretical justifications. By integrating

these design choices, the K3 model provides a robust approach for metal defect classification.

Future work could explore further hyperparameter tuning, attention mechanisms, and

lightweight model optimization to improve real-time defect classification performance.

2.4. Model training.

Model training was the process of training a machine learning model to learn data patterns and

produce accurate predictions [9]. This research used two CNN architectures, MobileNetV2 and

InceptionV3, with a transfer learning approach. Transfer learning allowed pre-trained models,

such as ImageNet, to be applied to specific tasks with small datasets, speeding up training and

reducing the need for large data [17]. The training process involved data augmentation

techniques, such as rotation and flipping, to increase variation and prevent overfitting [11]. The

“Adam” optimizer was used because of its stability and convergence efficiency [18]. The other

hyperparameters of the training process were set as follows: a batch size of 32, 100 epochs,

and a loss function using categorical crossentropy. Model evaluation was carried out using

metrics such as accuracy, precision, recall, and the confusion matrix, which provided a

complete picture of model performance.

2.5. Model testing.

Model testing was an important stage to evaluate the model's ability to recognize new data.

Each trained model was tested using test data, and the test results were summarized in a

confusion matrix, as shown in Figure 4. Based on this matrix, metrics such as accuracy,

precision, recall, and F1-score were calculated to assess the overall performance of the model

[7]. This process provided an understanding of the effectiveness of the model and areas that

needed improvement. At this stage, Google Colab was also used to test the model by utilizing

the available Tesla 4 GPU to speed up the model testing process.

Accuracy = Σ𝑇𝑃/𝑛

Recallclass = 𝑇𝑃𝑐𝑙𝑎𝑠𝑠/(𝑇𝑃𝑐𝑙𝑎𝑠𝑠 + Σ𝐹𝑁𝑐𝑙𝑎𝑠𝑠)

Precisionclass =𝑇𝑃𝑐𝑙𝑎𝑠𝑠/(𝑇𝑃𝑐𝑙𝑎𝑠𝑠 + Σ𝐹𝑃𝑐𝑙𝑎𝑠𝑠)

Where: TP = True Positive, FN = False Negative, FP = False Positive, n = Amount of Data.

Green Intelligent Systems and Applications 5(1), 2025, 93–105

100

Table 4. Confusion matrix example.

Actual Class C1 C2 C3 C4 C5 C6

C1 TP₁ FP₂/FN₁ FP₃/FN₁ FP₄/FN₁ FP₅/FN₁ FP₆/FN₁
C2 FP₁/FN₂ TP₂ FP₃/FN₂ FP₄/FN₂ FP₅/FN₂ FP₆/FN₂
C3 FP₁/FN₃ FP₂/FN₃ TP₃ FP₄/FN₃ FP₅/FN₃ FP₆/FN₃
C4 FP₁/FN₄ FP₂/FN₄ FP₃/FN₄ TP₄ FP₅/FN₄ FP₆/FN₄
C5 FP₁/FN₅ FP₂/FN₅ FP₃/FN₅ FP₄/FN₅ TP₅ FP₆/FN₅
C6 FP₁/FN₆ FP₂/FN₆ FP₃/FN₆ FP₄/FN₆ FP₅/FN₆ TP₆

3. Results and Discussion

The experiments (training and testing) were executed in Google Colab (standard license) using

the TensorFlow library. Figures 4 to 7 show graphs of the training performance of the models

that were trained on the data provided in the dataset. The model performance is displayed

through graphical visualization, and the data can be extracted to find several parameters for

processing, as shown in Table 5. Table 5 presents the parameters and training times of the four

models run on the problems addressed in this research.

Figure 4. K3 training accuracy and loss graph.

Figure 5. MobileNetV2 training accuracy and loss graph.

Green Intelligent Systems and Applications 5(1), 2025, 93–105

101

Figure 6. InceptionV3 training accuracy and loss graph.

Figure 7. K3 training accuracy and loss graph + augmentation.

Table 5. Architectural model training parameters and time

Parameter
Architecture

K3 MobileNetV2 InceptionV3 K3+Augmentation

Training time 4 Mins 29 Sec 3 Mins 36 Sec 7 Mins 10 Sec 34 Mins 11 Sec

Accuracy 0.98 0.998 0.986 0.9968

Loss 0.057 0.0118 0.0373 0.0110

Table 5 explains that the time taken to carry out the training process for each model

shows that the MobileNetV2 model has the fastest time, with a duration of 3 minutes and 36

seconds, while the K3+Augmentation model took the longest time, with a duration of 34

minutes and 11 seconds, due to the added data augmentation process. The highest accuracy is

achieved by MobileNetV2 at 0.998, indicating the best performance for making predictions,

while the lowest accuracy is observed with K3 at 0.98. However, the K3+Augmentation model

has a value close to K3, indicating that data augmentation can enhance model generalization.

The K3+Augmentation model also has the smallest loss value of 0.0110, indicating that the

prediction error rate is very low compared to the others. Based on these results, it can be said

that MobileNetV2 is the best choice, offering high performance and short training time, while

K3+Augmentation has a small loss but requires a much longer training time compared to the

other models.

Based on Figure 7, it is also evident that the model reached its peak accuracy at

approximately 80 epochs, after which no further significant improvement occurred. Therefore,

incorporating an early stopping mechanism based on validation loss would have optimized

Green Intelligent Systems and Applications 5(1), 2025, 93–105

102

computational efficiency. Implementing such a criterion could have automatically halted

training once performance gains became negligible, preventing unnecessary computation. This

approach will be considered in future experiments to enhance efficiency while maintaining

model performance. Figures 8 to 11 show the performance of the model that was trained on the

data provided in the dataset for testing. The model's performance is displayed through the

Confusion Matrix table. The data obtained from the Confusion Matrix can then be reprocessed

to determine accuracy, precision, and recall values. Table 6 shows the overall testing results of

the four models run on the problems addressed in this research.

Figure 8. K3 training accuracy and loss graph.

Figure 9. MobileNetV2 training accuracy and loss

graph.

Figure 10. InceptionV3 training accuracy and loss

graph.

Figure 11. K3 training accuracy and loss graph +

Augmentation.

The results of the K3 model confusion matrix in Figure 8 show that the model has high

performance, with the majority of correct predictions on the diagonal of the confusion matrix.

All classes have dominant correct predictions, but there are a few small errors. For example,

the crazing class was incorrectly predicted as scratches in 2 samples, and the rolled class was

incorrectly predicted as pitted in 1 sample. Figure 9 for the MobileNetV2 model shows that the

generalization of the data is good, as the majority of predictions are on the right diagonal.

However, the errors are more significant. For example, in the scratches class, it was wrongly

predicted as crazing in 5 samples, and the pitted class was wrongly predicted as crazing in 2

samples. Figure 10 for the InceptionV3 model shows that this model performs well and has

high accuracy, as most predictions fall on the correct diagonal. However, it still needs

additional data to improve its accuracy, as it has several errors. Specifically, 1 sample in the

inclusion class was incorrectly predicted as scratches, and 1 sample in the pitted class was

Green Intelligent Systems and Applications 5(1), 2025, 93–105

103

incorrectly predicted as crazing. Meanwhile, Figure 11 shows the results of the

K3+Augmentation model, which demonstrates perfect performance, as all predictions were

correct. This indicates that data augmentation can improve the model's ability to recognize

various patterns.

Table 6. Architectural model testing parameters and time.

Parameters
Architecture

K3 MobileNetV2 InceptionV3 K3+Augmentasi

Inference time 12ms/step 17ms/step 53ms/step 13ms/step

Accuracy 0.9444 0.90278 0.9444 1.0

Loss 0.170 0.268 0.268 0.0009

Avg Precision 0.9487 0.9026 0.9487 1

Avg Recall 0.9444 0.9385 0.9444 1

Based on the results of processing using several models, the testing results for the four

architectural models described in Table 6 show that the fastest time is achieved by the K3

model, which is very efficient and has the best performance. The highest accuracy is found in

the K3+Augmentation model, which has a perfect value of 1.0 or 100%. The highest loss value

in the MobileNetV2 and InceptionV3 models indicates that the prediction error made by these

models is greater than in the other models. The highest Average Precision, with a perfect value

of 1.00, is achieved by the K3+Augmentation model, demonstrating that it produces very

accurate predictions, while the MobileNetV2 model has the lowest value compared to the

others. The Average Recall for the K3+Augmentation model, with a perfect value of 1,

indicates that the model has a perfect ability to detect all class samples. Meanwhile, previous

research using the NEU Surface Defect Database, such as Islam et al. (2018), which developed

a CNN model producing an accuracy of 64.7%, and Majeed et al. (2024), which developed the

VGG16-LR and InceptionV3-LR models with accuracies of 98% and 96%, respectively, shows

that the K3+Augmentation model we built outperforms these models in terms of accuracy

4. Conclusions

Based on the findings of this study, it is evident that CNNs can be effectively utilized for

classifying defects on iron surfaces, demonstrating promising results. For future research, we

aim to refine and extend the developed model to not only classify defects but also detect their

precise locations and categorize the identified defect regions more accurately. A key challenge

in defect classification is that, even within the same category, defects may exhibit varying

patterns. This can lead to misclassification, particularly when defects resemble those from a

different category. Regarding model performance, the training results indicate that

MobileNetV2 and K3+Augmentation achieve comparable accuracy and loss values. However,

MobileNetV2 trains significantly faster than K3+Augmentation. In testing, K3+Augmentation

outperforms the other three tested models, achieving 100% accuracy with an extremely low

loss of just 0.09%. Therefore, among the evaluated models—K3, MobileNetV2, and

InceptionV3—the K3+Augmentation model demonstrates the best overall performance for this

classification task.

Green Intelligent Systems and Applications 5(1), 2025, 93–105

104

Acknowledgment

We would like to express our sincere thanks to the staff of the Department of Mechanical and

Industrial Engineering, UGM for providing the facility and assisting during the data collection

and experiments.

Competing Interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this manuscript.

Authors Contribution

Dhika Wahyu Pratama: Conceptualization, Formal analysis, Investigation, Methodology,

Experiment, Validation, Visualization, Writing - original draft; Muchammad Ismail:

Conceptualization, Formal analysis, Investigation, Methodology, Experiment, Validation,

Visualization, Writing - original draft; Restu Nurraudah: Conceptualization, Formal analysis,

Investigation, Methodology, Experiment, Validation, Visualization, Writing - original draft;

Achmad Pratama Rifai: Conceptualization, Formal analysis, Investigation, Methodology,

Resources, Supervision, Validation, Visualization, Writing - original draft, Writing - review

& editing; Nguyen Huu Tho: Resources, Writing - review & editing

References

[1] Cuan-Urquizo, E.; Barocio, E.; Tejada-Ortigoza, V.; Pipes, R. B.; Rodríguez, C. A.; Roman-Flores,

A. (2019). Characterization of the mechanical properties of FFF structures and materials: A review

on experimental, computational, and theoretical approaches. Materials, 12, 895.

https://doi.org/10.3390/ma12060895.

[2] Zaman, U.K.; Boesch, E.; Siadat, A.; Rivette, M.; Baqai, A.A. (2018). Impact of fused deposition

modeling (FDM) process parameters on strength of built parts using Taguchi’s design of

experiments. The International Journal of Advanced Manufacturing Technology, 101, 1215–1226.

https://doi.org/10.1007/s00170-018-3014-6.

[3] Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. (2018). MobileNetV2: Inverted

Residuals and Linear Bottlenecks. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 4510–4520. https://doi.org/10.1109/CVPR.2018.00474.

[4] Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. (2016). Rethinking the Inception

Architecture for Computer Vision. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2818–2826. https://doi.org/10.1109/CVPR.2016.308.

[5] Li, J.; Su, Z.; Geng, J.; Yin, Y. (2018). Real-time detection of steel strip surface defects based on

improved YOLO detection network. IFAC-PapersOnLine, 51, 76–81.

https://doi.org/10.1016/j.ifacol.2018.09.412.

[6] Shorten, C.; Khoshgoftaar, T.M. (2019). A survey on image data augmentation for deep learning.

Journal of Big Data, 6, 60. https://doi.org/10.1186/s40537-019-0197-0.

[7] Guan, S.; Lei, M.; Lu, H. (2020). A steel surface defect recognition algorithm based on improved

deep learning network model using feature visualization and quality evaluation. IEEE Access, 8,

49885–49895. https://doi.org/10.1109/ACCESS.2020.2979755.

[8] Babbie, E. R. (2020). The Practice of Social Research; Cengage Au: Boston, USA.

[9] Goodfellow, I.; Bengio, Y.; Courville, A. (2016). Deep Learning; MIT Press: Cambridge, USA.

[10] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.;

Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L. (2015). ImageNet Large Scale Visual

https://doi.org/10.3390/ma12060895
https://doi.org/10.1007/s00170-018-3014-6
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1016/j.ifacol.2018.09.412
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ACCESS.2020.2979755

Green Intelligent Systems and Applications 5(1), 2025, 93–105

105

Recognition Challenge. International Journal of Computer Vision, 115, 211–252.

https://doi.org/10.1007/s11263-015-0816-y.

[11] Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. (2019). Object detection with deep learning: A review.

IEEE Transactions on Neural Networks and Learning Systems, 30, 3212–3232.

https://doi.org/10.1109/TNNLS.2018.2876865.

[12] Han, J.; Pei, J.; Tong, H. (2022). Data Mining: Concepts and Techniques, 3rd ed.; Morgan

Kaufmann: Burlington, USA.

[13] Perez, L.; Wang, J. (2017). The effectiveness of data augmentation in image classification using

deep learning. https://doi.org/10.48550/arXiv.1712.04621

[14] Zhang, H.; Cisse, M.; Dauphin, Y. .; Lopez-Paz, D. (2017). Mixup: Beyond empirical risk

minimization. https://doi.org/10.48550/arXiv.1710.09412.

[15] Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. (2016). Understanding data augmentation

for classification: When to warp? 2016 International Conference on Digital Image Computing:

Techniques and Applications (DICTA), 1–6. https://doi.org/10.1109/DICTA.2016.7797091.

[16] Rasyidi, M.A.; Bariyah, T. (2020). Batik pattern recognition using convolutional neural network.

Bulletin of Electrical Engineering and Informatics, 9, 1430–1437.

https://doi.org/10.11591/eei.v9i4.2385.

[17] Tan, M.; Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks.

International Conference on Machine Learning, 6105–6114.

[18] Kingma, D.P.; Ba, J. (2014). Adam: A method for stochastic optimization.

https://doi.org/10.48550/arXiv.1412.6980.

[19] Islam, M.F.; Rahman, M.M. (2018). Metal surface defect inspection through deep neural network.

2018 International Conference on Mechanical, Industrial and Energy Engineering (ICMIEE), 258.

https://api.semanticscholar.org/CorpusID:235365832.

[20] Majeed, A.P.A.; Abdullah, M.A.; Nasir, A.F.A.; Razman, M.A.M.; Chen, W.; Yap, E.H. (2024).

Surface defect detection: A feature-based transfer learning approach. Journal of Physics:

Conference Series, 2762, 012088. https://doi.org/10.1088/1742-6596/2762/1/012088.

© 2025 by the authors. This article is an open access article distributed under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.48550/arXiv.1712.04621
https://doi.org/10.48550/arXiv.1710.09412
https://doi.org/10.1109/DICTA.2016.7797091
https://doi.org/10.11591/eei.v9i4.2385
https://doi.org/10.48550/arXiv.1412.6980
https://api.semanticscholar.org/CorpusID:235365832
https://doi.org/10.1088/1742-6596/2762/1/012088

