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ABSTRACT: Metal surface quality inspection is an important step in ensuring that products 

meet predetermined industry standards. The manual methods used were often slow and prone 

to errors, so more efficient solutions were needed. The application of Machine Learning (ML)-

based technologies, especially Convolutional Neural Networks (CNN), offered an innovative 

approach to overcome these challenges. CNN had the ability to automatically extract visual 

features from images with high accuracy, making it an effective tool in defect classification. 

This research used several CNN architectures, including MobileNetV2 and InceptionV3, as 

well as a model developed in-house, the K3 Model. Data augmentation, such as rotation and 

lighting adjustments, was applied to increase variation in the dataset and aid the model in 

generalization. The research results showed that the K3+Augmentation model achieved the 

highest accuracy of 100% in testing, with a very low loss of 0.0009. While MobileNetV2 

offered better training speed, K3+Augmentation showed superior performance in detecting and 

classifying metal defects. These findings confirmed the potential of CNN in improving the 

efficiency of quality inspection in modern industry. 

KEYWORDS: Metal surface inspection; CNN; MobileNetV2; K3 model; InceptionV3; 

augmentation   

1. Introduction 

Product quality was a very important aspect in the manufacturing process, both to maintain 

product function and aesthetics. Therefore, quality inspection was a key step in ensuring that 

products met the desired standards. This process included the inspection of various raw 

materials, such as plastics, liquids, and metals, each of which had different risks of defects. 

Metal products, for example, had a higher risk of defects due to reduced machine performance, 

improper storage, and temperature fluctuations during production [1]. 

The main problems affecting the quality of metal products often stemmed from machines 

not working optimally, causing defects in the final product. To reduce the number of defective 

products, visual inspection was an important step. Manual methods were often inefficient and 

prone to errors made by human operators. In this case, the application of Machine Learning 
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(ML)-based technology offered a better solution. By using ML, inspections could be carried 

out automatically with high accuracy and in shorter times [2]. 

Several Convolutional Neural Networks (CNN) architecture models, such as 

MobileNetV2 and InceptionV3, demonstrated superior performance in visual inspection tasks, 

including flaw detection on metal surfaces. MobileNetV2, as a lightweight CNN model, was 

designed for applications with limited computing resources, providing high efficiency without 

sacrificing accuracy. This model used inverted residual blocks to reduce memory and 

computational requirements, making it an ideal choice for performing visual inspection tasks 

[3]. On the other hand, InceptionV3 relied on a modular architecture with multi-scale parallel 

convolutions to extract complex features. This advantage made it capable of handling texture 

variations on metal surfaces that were difficult to detect by traditional methods [4]. In a recent 

study, Jiangyun et al. (2018) developed an improved YOLO model for surface defects detection 

of steel strips. The model was used to detect six types of defects, namely scar, scratch, 

inclusion, burr, seam, and iron scale. Additionally, the model was designed for real-time 

detection, with an average inference time of only 0.012s to detect a strip surface image. 

Apart from pre-trained models such as MobileNetV2 and InceptionV3, this research also 

developed a special model called the "K3 Model." K3 Model was named after the group 

members working on this model to overcome specific challenges in metal surface defect 

inspection. Another model comparison involved adding data augmentation techniques (K3 

Model + Augmentation). This model increased generalization by creating variations in the 

training data. Augmentations such as rotation, flipping, and changing light intensity proved 

effective in improving model performance on limited datasets [6]. 

This research focused on the multi-category classification of metal surface defects using 

the NEU Surface Defect dataset, which came from the database 

(https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database). This dataset 

included six categories of defects: crazing, inclusions, patches, pitted surfaces, rolled-in scale, 

and scratches, each of which had unique detection challenges [7]. By comparing several 

models, namely MobileNetV2, InceptionV3, and self-developed models (K3 Model and K3 

Model + Augmentation), this research aimed to evaluate the efficiency and accuracy in 

detecting metal defects. The results obtained were expected to provide new insights into the 

application of AI-based technology to improve the quality of manufactured products. 

2. Methods 

In this research, a Convolutional Neural Networks (CNN)-based architecture was used to 

recognize patterns and classify visual data, by comparing its effectiveness using the transfer 

learning method. The transfer learning technique applied involved pre-trained models such as 

MobileNetV2 and InceptionV3, as well as testing special models designed in this research. The 

process and steps for applying CNN to overcome this problem are explained in Figure 1, which 

includes the feature extraction and classification stages using the model being tested. 

2.1. Data collection. 

Data collection is a systematic process of obtaining information from various sources, aimed 

at supporting data-based analysis and decision making [8]. In the context of Machine Learning 

(ML), data collection is a key stage that determines model quality [9]. This research uses 

datasets available from the Kaggle database, a public data platform that provides a variety of 
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well-structured datasets for machine learning purposes [10]. To increase variation and 

overcome dataset limitations, data augmentation techniques such as mirroring, rotation, and 

lighting adjustment are applied [11]. This step is important to improve the generalization and 

accuracy of the model. The dataset obtained via Kaggle was further explored with cleaning and 

normalization to ensure relevance and quality of the data [12]. The dataset chosen is a dataset 

in the form of images that will be processed and then classified based on the type of product 

defect. The following are examples of images used in data processing in research. An overview 

of the image data is available in Table 1. 

 

Figure 1. Model working scheme. 

Table 1. Six types of metal surface defect images. 
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The dataset obtained consisted of images with different classifications for each image. 

The classification of the images was based on the form of product defects. These defects took 

various forms, namely crazing, inclusions, patches, pitted surfaces, rolled-in scale, and 

scratches. The dataset contained 1800 images, with 300 images for each classification, each 

having a size of 200 x 200 pixels. In this study, the dataset was split into 1656 images (92%) 

for the training dataset, 72 images (4%) for the validation dataset, and 72 images (4%) for the 

test dataset. The images in the validation and test datasets were drawn from different specimens 

than those in the training dataset to ensure the fairness of the testing procedures. 

2.2. Image Augmentation. 

Image augmentation is an important technique in deep learning to artificially increase data 

variation, especially when the dataset is limited [6]. This technique helps prevent overfitting 

and improves model generalization through transformations such as rotation, mirroring, and 

color adjustment [13]. Complex methods like mixup and random erasing also contribute to data 

variation [14]. Augmentation has been proven to be efficient in applications such as image 

classification and object detection [15]. However, irrelevant transformations can significantly 

alter image characteristics, confusing the model, so they need to be applied with caution [11]. 

To achieve optimal performance, deep learning models generally require large amounts 

of data. This is essential to improve model quality and reduce the risk of overfitting. However, 

obtaining large datasets is often hindered by several challenges, such as cost, time, and other 

factors. To address this issue in image classification, image augmentation can be used to 

increase the number of training images. During data augmentation, small random 

transformations are applied to images without altering the main content or key features of the 

image. Examples of these transformations include mirroring, resizing, and lighting 

adjustments. Figure 2 shows several examples of images transformed through data 

augmentation. However, the data augmentation process requires careful consideration to ensure 

that the augmented data does not significantly differ from the original data. Excessive 

transformations can lead to confusion in the model, making it difficult to understand the true 

meaning of the image. This could result in the model making incorrect predictions. 

 
Figure 2. Example of image transformation orientation given by augmentation [16]. 

 

In this study, random transformations were applied to each image in the training dataset. 

This approach was adopted to ensure that the classification model being built is more robust, 

enabling it to better handle varied training data, prevent overfitting, and improve its accuracy 

when dealing with previously unseen images. For this research, with a total of 1656 images in 

the training dataset, several augmentation techniques were applied to each image, as shown in 

Table 2. 
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Table 2. Image augmentation parameters 

Transformation Value 

 Rotation 10° 
 Zoom 0.2 

 Brightness [0.8, 1.2] 

 Horizontal Flip True 

 Vertical Flip True 

 

Table 2 presents the image augmentation parameters used for data processing. Several 

indicators are included: Rotation, which involves randomly rotating the image by a maximum 

of 10 degrees to make the model more robust to rotation; Zoom, with a value of 0.2, meaning 

the image will be enlarged or reduced by up to 20% to address variations in object size in the 

original data; Image Brightness, which is adjusted randomly between 80% and 120% of the 

original value to make the model more resilient to lighting variations; Horizontal Flip, set to 

True, which allows the image to be mirrored during augmentation; and Vertical Flip, indicating 

that the image can be flipped vertically to provide a variety of vertical orientations. 

2.3. Model architecture. 

In this research, a simple architecture named K3 was developed, with the detailed architecture 

shown in Figure 3. The K3 architecture is compared with two widely used architectures, 

MobileNetV2 and InceptionV3, which are both transfer learning models. These two models 

have been pre-trained using the ImageNet database to expedite the learning process, and they 

were subsequently modified to address the specific challenges of this research. Google Colab 

was used to conduct the model training, utilizing the available Tesla P4 GPU to accelerate the 

training process. 

 

 
Figure 3. K3 Architecture. 

This research compared the K3 architecture with MobileNetV2 and InceptionV3, and 

further evaluated the results after the K3 architecture was augmented with data. Table 3 below 

shows the composition of the K3 architecture, along with the parameters used. Table 3 shows 

the K3 Model Architecture and Parameters. The K3 model was developed to address specific 

challenges in metal surface defect classification, while balancing accuracy, computational 

efficiency, and generalization ability. This model is designed to handle image data with input 

dimensions of 200x200 pixels. 

The K3 model consists of four convolutional layers, each followed by a max pooling 

operation. The decision to use four layers was based on empirical testing and a literature 
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review, where deeper architectures often improve feature extraction but may lead to overfitting 

or increased training time. Shallower models with one or two layers failed to extract sufficient 

hierarchical features, leading to poor defect classification, while deeper models with more than 

four layers increased computational complexity without providing significant accuracy 

improvements. The choice of four layers provided an optimal trade-off, effectively capturing 

edge details, textures, and patterns characteristic of metal defects. Each convolutional layer in 

K3 uses a 3×3 kernel size, a widely used setting in deep learning models such as VGG and 

ResNet. This kernel size balances computational efficiency and feature extraction capability. 

Larger kernels, such as 5×5 or 7×7, were tested but led to increased computational costs without 

significant accuracy gains. Stacking 3×3 convolutions mimics the effect of larger receptive 

fields while maintaining efficiency. Following each convolutional layer, a 2×2 max pooling 

operation is applied to reduce dimensionality and retain critical features. Max pooling was 

chosen over average pooling because it helps retain dominant defect features while reducing 

noise. Average pooling was tested but blurred critical edge details, lowering classification 

performance. The 2×2 window was selected as it provides a balance between feature reduction 

and preserving spatial details. 

Table 3. K3 architecture and parameters. 

Layer Parameter 

Convolution 1 32, 3, activation = ‘relu’, 

input_shape = [200,200,3] 

Max Pooling  2 

Convolution 2 64,3, activation= ‘relu’ 

Max Pooling 2 

Convolution 3 128, 3, activation= ‘relu’ 

Max Pooling 2 

Convolution 4 256, 3, activation = ‘relu’ 

Max Pooling 2 

Global Average Pooling - 

Dense 512, activation= ‘relu’ 

Dropout 0.2 

Dense Output 6, activation= ‘Softmax’ 

 

Before the dense layers, a global average pooling (GAP) layer is used to efficiently 

summarize spatial features. GAP was chosen over direct flattening as it reduces overfitting by 

minimizing the parameter count, improving model generalization. Empirical tests showed that 

GAP improved classification performance over direct flattening, acting as a regularization 

technique to ensure the model does not rely on localized patterns alone. The model includes a 

fully connected dense layer with 512 neurons before the output layer. Lower values, such as 

128 or 256, resulted in lower accuracy due to insufficient feature extraction, while higher 

values, such as 1024, led to increased computational cost without proportional accuracy 

improvements. The choice of 512 neurons provided the best balance of expressiveness and 

efficiency. A dropout layer with a rate of 0.2 is applied before the final dense layer to prevent 

overfitting. Higher dropout rates above 0.3 degraded the learning process, leading to slower 

convergence, while lower dropout rates below 0.2 were insufficient to mitigate overfitting in 

smaller datasets. The dropout rate of 0.2 was selected based on cross-validation results, 

showing improved generalization. 

ReLU (Rectified Linear Unit) activation is applied to all convolutional and dense layers, 

except the output layer. ReLU prevents vanishing gradients, ensuring stable model training. 

Other activations, such as Leaky ReLU and Swish, were tested, but ReLU showed the best 
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convergence speed. The output layer uses Softmax activation to convert logits into probabilities 

for the six defect categories. The K3 model was designed considering the strengths and 

limitations of existing architectures. MobileNetV2 provided high efficiency but slightly lower 

accuracy, while InceptionV3 demonstrated strong feature extraction but was computationally 

expensive. The K3 model was designed as a middle-ground approach for performance and 

efficiency, and the augmented version, K3+Augmentation, achieved the highest accuracy but 

required the longest training time. The design of the K3 model was optimized to achieve a 

balance between depth and computational efficiency, ensuring effective feature extraction 

without excessive training time. The choice of kernel size, pooling strategy, and activation 

functions were made based on empirical results and theoretical justifications. By integrating 

these design choices, the K3 model provides a robust approach for metal defect classification. 

Future work could explore further hyperparameter tuning, attention mechanisms, and 

lightweight model optimization to improve real-time defect classification performance. 

2.4. Model training. 

Model training was the process of training a machine learning model to learn data patterns and 

produce accurate predictions [9]. This research used two CNN architectures, MobileNetV2 and 

InceptionV3, with a transfer learning approach. Transfer learning allowed pre-trained models, 

such as ImageNet, to be applied to specific tasks with small datasets, speeding up training and 

reducing the need for large data [17]. The training process involved data augmentation 

techniques, such as rotation and flipping, to increase variation and prevent overfitting [11]. The 

“Adam” optimizer was used because of its stability and convergence efficiency [18]. The other 

hyperparameters of the training process were set as follows: a batch size of 32, 100 epochs, 

and a loss function using categorical crossentropy. Model evaluation was carried out using 

metrics such as accuracy, precision, recall, and the confusion matrix, which provided a 

complete picture of model performance. 

2.5. Model testing. 

Model testing was an important stage to evaluate the model's ability to recognize new data. 

Each trained model was tested using test data, and the test results were summarized in a 

confusion matrix, as shown in Figure 4. Based on this matrix, metrics such as accuracy, 

precision, recall, and F1-score were calculated to assess the overall performance of the model 

[7]. This process provided an understanding of the effectiveness of the model and areas that 

needed improvement. At this stage, Google Colab was also used to test the model by utilizing 

the available Tesla 4 GPU to speed up the model testing process. 

 

Accuracy = Σ𝑇𝑃/𝑛 

Recallclass = 𝑇𝑃𝑐𝑙𝑎𝑠𝑠/(𝑇𝑃𝑐𝑙𝑎𝑠𝑠 + Σ𝐹𝑁𝑐𝑙𝑎𝑠𝑠) 

Precisionclass =𝑇𝑃𝑐𝑙𝑎𝑠𝑠/(𝑇𝑃𝑐𝑙𝑎𝑠𝑠 + Σ𝐹𝑃𝑐𝑙𝑎𝑠𝑠) 

 

Where: TP = True Positive, FN = False Negative, FP = False Positive, n = Amount of Data. 
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Table 4. Confusion matrix example. 

Actual Class C1 C2 C3 C4 C5 C6 

C1 TP₁ FP₂/FN₁ FP₃/FN₁ FP₄/FN₁ FP₅/FN₁ FP₆/FN₁ 
C2 FP₁/FN₂ TP₂ FP₃/FN₂ FP₄/FN₂ FP₅/FN₂ FP₆/FN₂ 
C3 FP₁/FN₃ FP₂/FN₃ TP₃ FP₄/FN₃ FP₅/FN₃ FP₆/FN₃ 
C4 FP₁/FN₄ FP₂/FN₄ FP₃/FN₄ TP₄ FP₅/FN₄ FP₆/FN₄ 
C5 FP₁/FN₅ FP₂/FN₅ FP₃/FN₅ FP₄/FN₅ TP₅ FP₆/FN₅ 
C6 FP₁/FN₆ FP₂/FN₆ FP₃/FN₆ FP₄/FN₆ FP₅/FN₆ TP₆ 

3. Results and Discussion 

The experiments (training and testing) were executed in Google Colab (standard license) using 

the TensorFlow library. Figures 4 to 7 show graphs of the training performance of the models 

that were trained on the data provided in the dataset. The model performance is displayed 

through graphical visualization, and the data can be extracted to find several parameters for 

processing, as shown in Table 5. Table 5 presents the parameters and training times of the four 

models run on the problems addressed in this research. 

 

 
Figure 4. K3 training accuracy and loss graph. 

 

 
Figure 5. MobileNetV2 training accuracy and loss graph. 
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Figure 6. InceptionV3 training accuracy and loss graph. 

 

 
Figure 7. K3 training accuracy and loss graph + augmentation. 

 

Table 5. Architectural model training parameters and time 

Parameter 
Architecture 

K3 MobileNetV2 InceptionV3 K3+Augmentation 

Training time 4 Mins 29 Sec 3 Mins 36 Sec 7 Mins 10 Sec 34 Mins 11 Sec 

Accuracy 0.98 0.998 0.986 0.9968 

Loss 0.057 0.0118 0.0373 0.0110 

 

Table 5 explains that the time taken to carry out the training process for each model 

shows that the MobileNetV2 model has the fastest time, with a duration of 3 minutes and 36 

seconds, while the K3+Augmentation model took the longest time, with a duration of 34 

minutes and 11 seconds, due to the added data augmentation process. The highest accuracy is 

achieved by MobileNetV2 at 0.998, indicating the best performance for making predictions, 

while the lowest accuracy is observed with K3 at 0.98. However, the K3+Augmentation model 

has a value close to K3, indicating that data augmentation can enhance model generalization. 

The K3+Augmentation model also has the smallest loss value of 0.0110, indicating that the 

prediction error rate is very low compared to the others. Based on these results, it can be said 

that MobileNetV2 is the best choice, offering high performance and short training time, while 

K3+Augmentation has a small loss but requires a much longer training time compared to the 

other models. 

Based on Figure 7, it is also evident that the model reached its peak accuracy at 

approximately 80 epochs, after which no further significant improvement occurred. Therefore, 

incorporating an early stopping mechanism based on validation loss would have optimized 
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computational efficiency. Implementing such a criterion could have automatically halted 

training once performance gains became negligible, preventing unnecessary computation. This 

approach will be considered in future experiments to enhance efficiency while maintaining 

model performance. Figures 8 to 11 show the performance of the model that was trained on the 

data provided in the dataset for testing. The model's performance is displayed through the 

Confusion Matrix table. The data obtained from the Confusion Matrix can then be reprocessed 

to determine accuracy, precision, and recall values. Table 6 shows the overall testing results of 

the four models run on the problems addressed in this research. 

 
Figure 8. K3 training accuracy and loss graph. 

 
Figure 9. MobileNetV2 training accuracy and loss 

graph. 

 

 
Figure 10. InceptionV3 training accuracy and loss 

graph. 

 

 
Figure 11. K3 training accuracy and loss graph + 

Augmentation. 

The results of the K3 model confusion matrix in Figure 8 show that the model has high 

performance, with the majority of correct predictions on the diagonal of the confusion matrix. 

All classes have dominant correct predictions, but there are a few small errors. For example, 

the crazing class was incorrectly predicted as scratches in 2 samples, and the rolled class was 

incorrectly predicted as pitted in 1 sample. Figure 9 for the MobileNetV2 model shows that the 

generalization of the data is good, as the majority of predictions are on the right diagonal. 

However, the errors are more significant. For example, in the scratches class, it was wrongly 

predicted as crazing in 5 samples, and the pitted class was wrongly predicted as crazing in 2 

samples. Figure 10 for the InceptionV3 model shows that this model performs well and has 

high accuracy, as most predictions fall on the correct diagonal. However, it still needs 

additional data to improve its accuracy, as it has several errors. Specifically, 1 sample in the 

inclusion class was incorrectly predicted as scratches, and 1 sample in the pitted class was 
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incorrectly predicted as crazing. Meanwhile, Figure 11 shows the results of the 

K3+Augmentation model, which demonstrates perfect performance, as all predictions were 

correct. This indicates that data augmentation can improve the model's ability to recognize 

various patterns. 

Table 6. Architectural model testing parameters and time. 

Parameters 
Architecture 

K3 MobileNetV2 InceptionV3 K3+Augmentasi 

Inference time 12ms/step 17ms/step 53ms/step 13ms/step 

Accuracy 0.9444 0.90278 0.9444 1.0 

Loss 0.170 0.268 0.268 0.0009 

Avg Precision 0.9487 0.9026 0.9487 1 

Avg Recall 0.9444 0.9385 0.9444 1 

 

Based on the results of processing using several models, the testing results for the four 

architectural models described in Table 6 show that the fastest time is achieved by the K3 

model, which is very efficient and has the best performance. The highest accuracy is found in 

the K3+Augmentation model, which has a perfect value of 1.0 or 100%. The highest loss value 

in the MobileNetV2 and InceptionV3 models indicates that the prediction error made by these 

models is greater than in the other models. The highest Average Precision, with a perfect value 

of 1.00, is achieved by the K3+Augmentation model, demonstrating that it produces very 

accurate predictions, while the MobileNetV2 model has the lowest value compared to the 

others. The Average Recall for the K3+Augmentation model, with a perfect value of 1, 

indicates that the model has a perfect ability to detect all class samples. Meanwhile, previous 

research using the NEU Surface Defect Database, such as Islam et al. (2018), which developed 

a CNN model producing an accuracy of 64.7%, and Majeed et al. (2024), which developed the 

VGG16-LR and InceptionV3-LR models with accuracies of 98% and 96%, respectively, shows 

that the K3+Augmentation model we built outperforms these models in terms of accuracy 

4. Conclusions 

Based on the findings of this study, it is evident that CNNs can be effectively utilized for 

classifying defects on iron surfaces, demonstrating promising results. For future research, we 

aim to refine and extend the developed model to not only classify defects but also detect their 

precise locations and categorize the identified defect regions more accurately. A key challenge 

in defect classification is that, even within the same category, defects may exhibit varying 

patterns. This can lead to misclassification, particularly when defects resemble those from a 

different category. Regarding model performance, the training results indicate that 

MobileNetV2 and K3+Augmentation achieve comparable accuracy and loss values. However, 

MobileNetV2 trains significantly faster than K3+Augmentation. In testing, K3+Augmentation 

outperforms the other three tested models, achieving 100% accuracy with an extremely low 

loss of just 0.09%. Therefore, among the evaluated models—K3, MobileNetV2, and 

InceptionV3—the K3+Augmentation model demonstrates the best overall performance for this 

classification task. 
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