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ABSTRACT: Agriculture stands as a crucial economic driver, playing a pivotal role in 

fostering economic progress. Understanding the dynamics of the agricultural system is 

imperative for ensuring food security. Even as technological strides like vertical farming 

emerge, conventional farming practices and beliefs continue to hold sway. This study delves 

into fundamental aspects such as soil composition, pH levels, humidity, and rainfall, employing 

a range of machine learning models including kernel naive Bayes, Gaussian naive Bayes, linear 

support vector machine (SVM), quadratic discriminant analysis, and quadratic SVM. The 

primary objective is to provide insightful crop recommendations to farmers. Accurate crop 

forecasting is paramount for optimizing agricultural methodologies and maintaining a 

consistent food supply. By leveraging historical weather trends, soil quality, and crop 

production data, machine learning algorithms proficiently anticipate crop yields. The outcomes 

of this investigation have the potential to refine crop management practices and reinforce food 

security measures. 

KEYWORDS: Machine learning; agriculture; crop prediction; soil quality; classification 

learner algorithm.  

1. Introduction 

Agriculture plays an indispensable role in sustaining human life by generating vital resources 

such as food, fiber, and fuel. The projected global population of 9.7 billion by 2050 underscores 

the urgency to significantly augment food production. Precise crop forecasting, anchored in 

soil quality assessment, becomes pivotal for fine-tuning agricultural strategies, guaranteeing 

food security, and mitigating economic setbacks stemming from crop loss. Conventional 

approaches to crop prediction are burdened by lengthy processes, labor intensiveness, and 

susceptibility to inaccuracy due to the unpredictability of climatic conditions and other 

ecological variables. The application of machine learning algorithms in agriculture has gained 

considerable traction in recent times. These algorithms proficiently anticipate crop yields by 

swiftly and accurately analyzing extensive datasets comprising historical weather patterns, soil 

quality, and crop production data. This analytical prowess aids farmers in enhancing their crop 
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management practices. Numerous research endeavors have indicated that these algorithms hold 

promise for amplifying production and operational efficiency within the agricultural domain. 

This research paper directs its focus towards the integration of machine learning within 

the realm of agriculture, particularly in predicting crops based on soil attributes. Despite the 

strides in agricultural technology, conventional methods and beliefs still wield considerable 

influence within the agricultural sector. The precision of crop prediction remains paramount 

for the optimization of farming techniques and the assurance of a consistent food supply. This 

study thoroughly examines pivotal factors encompassing soil composition, pH levels, 

humidity, and rainfall. A diverse array of machine learning models, including kernel naive 

Bayes, Gaussian naive Bayes, linear SVM, quadratic discriminant analysis, and quadratic 

SVM, are presented to analyze these aspects. The comparative assessment of these algorithms 

underscores the remarkable performance of kernel naive Bayes and Gaussian naive Bayes in 

the domain of crop prediction. Capitalizing on the insights gleaned from these algorithmic 

outcomes, the paper advocates for precise crop recommendations to be provided to farmers. 

Furthermore, the research delves into the potential implications of these algorithms in refining 

crop management practices and fortifying food security measures. The approach places 

significant emphasis on harnessing historical weather trends, soil quality, and crop production 

data to derive meticulous forecasts of forthcoming crop yields. 

2. Literature Survey 

Sharma et al. [1] implemented several machine learning models, such as decision tree, 

Gaussian Naive Bayes, logistic regression, random forest, and XGBoost, to recommend the 

appropriate crop based on soil composition, pH value, humidity, and rainfall. However, they 

did not utilize temperature as an input parameter, which affects plant growth. Ngozi Clara and 

Eli-Chukwu [2] discussed the uncertainties and challenges of farming, emphasizing the 

importance of soil, crop, disease, and weed management. The authors also highlighted the 

potential of artificial intelligence (AI) in addressing these issues. Aruna Devi et al. [3] 

elaborated on a study that uses machine learning techniques to select and predict crops based 

on agricultural parameters. They used the random forest algorithm as a classifier and predictor, 

outperforming support vector machine (SVM) and multivariate regression in terms of accuracy. 

Vamsi Krishna et al. [4] designed a method based on five features: season, area, 

temperature, rainfall, and crop name. They obtained an accuracy of 67% for the linear 

regression technique, 75% for the random forest algorithm, and 97% for the k-nearest neighbor 

approach. Janhavi Babber et al. [5] developed a system that uses the WEKA tool to analyze 

soil, considering variables like temperature and humidity to forecast the most lucrative crops. 

The goal is to determine the best crop to grow in each soil type to maximize yield. The study 

highlights the potential of using machine learning tools and techniques to optimize agricultural 

practices and improve crop management. Apoorva Chaudhari et al. [6] employed data mining 

techniques and web scraping to create a platform for crop suggestion and optimal pricing, 

aiming to benefit farmers by providing recommendations for crop selection and optimal 

purchasing of crop seeds. 

Pande et al. [7] designed a system that discussed the limitations of current yield 

prediction systems and proposed a mobile application for farmers. Utilizing different machine 

learning methods like Random Forest, Artificial neural networks (ANN), SVM, multiple linear 

regression (MLR), and K-Nearest Neighbors (KNN), it has a predictor and recommender 
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system. According to the results, Random Forest has a 95% accuracy rate. The model also 

suggests timely usage of fertilizers. 

Sabbir Ahmed et al. [8] constructed a system in which data was pre-processed from a 

Bangla book series on land and soil resources. The resulting machine-learning model achieved 

97% accuracy in crop yield prediction. Sachin D. Shingade et al. [9] proposed a system that 

uses machine learning and data analytics to predict the best agricultural seed. The results, with 

an accuracy of 95.12%, demonstrate that the random forest classifier is the most successful in 

the suggestion. M. Chandraprabha et al. [10] designed a system that analyzes soil, crop codes, 

and production data to predict suitable soils for rice, cumbu, and raagi crops. Ibk, bayes net, 

naive bayes, and random forest algorithms are used, and Ibk and random forest show the 

highest accuracy of 97.31% and 97.4%, respectively. It is suggested that ensemble techniques 

could improve accuracy for larger datasets. 

Numerous researchers have leveraged machine learning (ML) techniques for crop 

selection prediction, as evidenced by a range of studies [12‒15]. In addition, several papers 

have delved into crop yield estimation through the utilization of ML algorithms [16‒20], 

aiming to enhance accuracy. This paper is centered on conducting a comparative analysis of 

diverse ML algorithms employed in the context of crop selection. 

3. Proposed System 

By considering geographical attributes including rainfall, humidity, soil pH, and the ratios of 

nitrogen, phosphorus, and potassium, this study employs a comprehensive set of ten distinct 

machine learning algorithms: kernel naive Bayes, Gaussian naive Bayes, linear SVM, quadratic 

discriminant analysis, quadratic SVM, SVM kernel, coarse tree, fine Gaussian SVM, coarse 

KNN, ensemble-RUS Boosted trees, and medium trees. The primary objective is to determine 

suitable crop choices for cultivation on various farms. The algorithms undergo a thorough 

evaluation, encompassing key metrics such as accuracy, error rate, training time, and execution 

time. The overarching aim of this framework is to equip farmers with insightful guidance, 

enabling them to make informed decisions about crop selection based on the specific conditions 

of their individual farms. 

 

Figure 1. Flow diagram for the proposed system. 
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3.1. System setup. 

The 'Classification Learner App' within MATLAB's Statistics and Machine Learning toolbox 

serves as the tool for crafting and evaluating the algorithms. By using this app, you can 

automatically train multiple supervised machine learning classifiers using input data and 

predefined groups. Leveraging MATLAB's prediction function, trained classifiers can 

seamlessly be integrated to make predictions for new input data. Notably, the app now works 

with 30 different types of classifiers in the latest version (R2022b) of MATLAB, giving you a 

huge range of options for analysis. 

3.2. Data collection. 

In this research, we utilized the dataset cited in [11]. This dataset was constructed to encompass 

22 different crops, documented annually across various states. The data collection was 

facilitated through the installation of sensors on different farmlands. The dataset consisted of 

2200 rows and eight columns, encompassing attributes like crop type, rainfall, humidity, pH 

level, potassium, nitrogen, and phosphorus, as demonstrated in Table 1. This data serves as the 

foundational material for training machine learning models tailored for predicting crop yields, 

offering valuable insights to aid farmers in making well-informed decisions. 

Table 1. Snippet of crop prediction dataset [11]. 

 

 3.3. Pre-processing step. 

The initial phase of the implemented methodology centers on data pre-processing. This step 

entails addressing missing values, verifying accurate data formatting, and extracting essential 

features. The correct formatting of data is imperative for ensuring precise analysis. The insights 

collected during this stage will be imported into MATLAB to generate the intended results. 

3.4. Feature extraction. 

In the realm of machine learning, feature extraction plays a vital role in minimizing the data 

required to effectively represent a substantial dataset. Through the identification of the most 

influential predictive features, the overall scale of the training dataset can be diminished. These 

features commonly encompass soil attributes, crop variety, and atmospheric conditions in the 
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prediction of crop yields. The correlation matrix is often employed as a guiding tool for feature 

selection, with attributes displaying higher correlation values being frequently prioritized as 

potent yield predictors. 

3.5. Data prediction. 

The crop recommendation dataset is divided into two segments: 80% is allocated for training 

and validation, while the remaining 20% is reserved for testing. This partitioning is conducted 

randomly. MATLAB's Classification Learner App provides pre-defined validation methods to 

assess the effectiveness of the trained model's predictions. Among these strategies are "no 

validation", "holdout", and "cross-validation". The "no validation" approach employs all input 

data for training and employs the same data for constructing the confusion matrix. "holdout 

validation" divides the input data into two distinct sets: one for training the model and the other 

for validating it. Alternatively, in "cross-validation", the data is divided into subsets, with one 

set used for validation and the rest for training. The default option for validation is typically set 

to q = 5. Irrespective of the chosen validation method, the ultimate predictive model is trained 

using the complete dataset. The system incorporates a range of ten diverse machine-learning 

prediction models. 

3.5.1. Gaussian naive Bayes (GNB). 

Built upon the principles of Bayes' theorem, this method operates under the assumption of 

attribute independence. Through analysis of input data, the projected outcome for each class is 

computed, ultimately designating the class with the highest probability as the favored outcome. 

This algorithm is notable for its simplicity and efficiency, particularly excelling in scenarios 

involving high-dimensional data with continuous attributes. Nonetheless, its efficacy relies on 

the fulfillment of the feature independence assumption. When presented with a novel input 

example characterized by feature values x = (x1, x2, ..., xn), the Gaussian Naive Bayes (GNB) 

classifier evaluates the posterior probability of each class label c, based on the provided 

evidence x. This computation follows the prescribed equation: 

𝑝(𝑐|𝑥) = 𝑝(𝑥|𝑐) ∗ 𝑝(𝑐)/𝑝(𝑥)………. (1) 

In this context, p(c) represents the prior probability of class c, while p(x) signifies the 

marginal likelihood of the evidence x, a constant across all classes. The posterior probability 

of class c, given the evidence x, is denoted as 𝑝(𝑐|𝑥). The likelihood of the evidence x given 

class c is expressed as 𝑝(𝑥|𝑐), and the likelihood of the evidence x given class c is also 

represented as 𝑝(𝑐|𝑥). 

3.5.2. Kernel naive Bayes.  

This variation of the Naive Bayes algorithm employs kernel methods to address scenarios 

where classes are not linearly separable. It operates on the fundamental premise that, within a 

given class, features exhibit conditional independence. By utilizing a kernel function, the 

algorithm initiates by mapping input features to a higher-dimensional space. Subsequently, it 

calculates the likelihood of each class for a provided input vector, relying on the distances 

between the mapped points and the class centroids. This approach adeptly handles complex 

high-dimensional feature spaces and finds application in tasks like image and text 
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classification. In the context of a training dataset comprising N instances, each encompassing 

a d-dimensional input vector x and a corresponding class label y: 

(a) Apply a kernel function k to the input vectors to map them into a higher-dimensional 

space: 

𝜑(𝑥) = [𝑘(𝑥, 𝑥1), 𝑘(𝑥, 𝑥2), … , 𝑘(𝑥, 𝑥𝑁)]…….… (2) 

where k (x, x_1) is the kernel function applied to the input vector x and the ith training 

example x_i. The steps to implement the algorithms are as follows: 

(b) Estimate the class prior probabilities p(y) and the class-conditional probabilities 

p(φ(x)|y) using maximum likelihood estimation: 

𝑝(𝑦) =
𝑁𝑦

𝑁
 

𝑝(𝜑(𝑥)|𝑦) = (1/𝑁𝑦) ∗ 𝛴𝑖: 𝑦𝑖 = 𝑦𝑘(𝜑(𝑥), 𝜑(𝑥𝑖))……….. (3) 

where Ny is the number of training examples with class label y, and Σ_{i:y_i=y} denotes 

the sum of all training examples with class label y. 

(c) Calculate the posterior probabilities for each class using Bayes' theorem: 

 

𝑝(𝑦|𝑥) = 𝑝(𝑦) ∗ 𝑝(𝜑(𝑥)|𝑦)/𝑝(𝜑(𝑥))……. (4) 

where p(y) is the prior probability of class y, p(φ(x)|y) is the class-conditional 

probability of the transformed input vector φ(x) given class y, and p(φ(x)) is the 

marginal probability of the transformed input vector, which can be calculated as: 

𝑝(𝜑(𝑥)) = 𝛴𝑦𝑝(𝜑(𝑥)|𝑦) ∗ 𝑝(𝑦)……….. (5) 

3.5.3. Linear SVM. 

This distinct machine learning algorithm functions by identifying the most effective hyperplane 

to distinguish between various classes within a dataset. The optimal hyperplane is the one that 

maximizes the separation margin between the classes during classification. Subsequently, this 

hyperplane is employed to categorize new data points, assigning them to specific classes based 

on their position relative to the hyperplane. The descriptor "linear" in Linear SVM indicates 

the algorithm's assumption of a straight-line decision boundary between classes. The key 

equations underpinning the operations of a linear SVM are as follows: 

Given a training set of N examples, each consisting of a d-dimensional input vector x and a 

corresponding binary class label y (+1 or -1), the goal is to find a hyperplane with weights w 

and bias b that separates the positive and negative examples with the maximum margin: 

𝑤𝑇𝑥𝑖 +  𝑏 ≥  +1 𝑖𝑓 𝑦𝑖 =  +1 

𝑤𝑇𝑥𝑖 +  𝑏 ≤  −1 𝑖𝑓 𝑦𝑖 =  −1 ……… (6) 
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3.5.4. Quadratic Discriminant Analysis (QDA). 

It is like Linear Discriminant Analysis (LDA), but instead of assuming that all classes have the 

same covariance of predictors, it makes a different assumption. QDA models are fitted using 

maximum likelihood estimation, and a quadratic equation determines the decision boundary 

between classes. QDA can be helpful when the covariance matrices of the predictors are not 

equal across classes, and it can potentially result in better classification accuracy than LDA in 

such cases. The key equations for QDA are as follows: 

(a) Given a training set of N examples, each consisting of a d-dimensional input vector x 

and a corresponding binary class label y (+1 or -1), the goal is to estimate the class-

conditional densities p(x|y) for each class using multivariate Gaussian distributions: 

𝑝(𝑥|𝑦 = +1) = 𝑁(𝑥|𝜇1, 𝛴1) 

𝑝(𝑥|𝑦 = −1) = 𝑁(𝑥|𝜇2, 𝛴2)………. (7) 

where N (x | μ, Σ) denotes the probability density function of a d-dimensional Gaussian 

distribution with mean μ and covariance matrix Σ. 

(b) The prior probabilities p(y) is estimated based on the relative frequency of the classes 

in the training set: 

𝑝(𝑦 = +1) = 𝑁1/𝑁 

𝑝(𝑦 = −1) = 𝑁2/𝑁……….……….. (8) 

where N1 and N2 are the numbers of positive and negative examples, respectively, and N 

= N1 + N2 is the total number of examples. 

3.5.5. Quadratic SVM (QSVM). 

This SVM algorithm maps data points into a higher-dimensional feature space using a quadratic 

kernel function. In this feature space, the decision boundary between different data classes is a 

quadratic curve instead of a straight line, as in linear SVM. This allows the QSVM to capture 

more complex patterns in the data and achieve higher classification accuracy, especially when 

dealing with non-linearly separable data. However, QSVM can be computationally expensive 

for large datasets, and the kernel function and parameter selection can significantly influence 

its performance. The key equations for QSVM are as follows: 

Given a training set of N examples, each consisting of a d-dimensional input vector x and 

corresponding binary class label y (+1 or -1), the goal is to find a quadratic decision boundary 

in the form: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 + 𝑥𝑇𝑀𝑥…………. (9) 

where w is a d-dimensional weight vector, b is a bias, and M is a d x d symmetric positive 

definite matrix. 
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3.5.6. Coarse tree. 

A Coarse Tree approach simplifies decision tree structures by limiting their depth and 

complexity, favoring interpretability and overfitting avoidance. The strategy stops tree growth 

at a predetermined depth, resulting in larger leaf nodes for more generalized predictions. This 

emphasis on interpretability enhances the model's transparency, making it well-suited for 

extracting insights and generalizing to new data. However, the trade-off is a potential sacrifice 

in predictive accuracy on the training data, as intricate patterns might not be captured. Coarse 

Trees strike a balance between interpretability and predictive power, making them suitable 

when a clear understanding of the model's decisions is valued over maximal accuracy. 

3.5.7. Fine Gaussian. 

The Fine Gaussian approach extends the Gaussian Naive Bayes (GNB) algorithm by allowing 

for correlations between features using multivariate Gaussian distributions. 

𝑝( 𝑥 ∣ 𝑐 ) =
1

(2𝜋)𝑑/2∣Σ𝑐∣1/2  exp (−
1

2
(𝑥 − 𝜇𝑐)𝑇Σ𝑐

−1(𝑥 − 𝜇𝑐))………. (10) 

Explanation: 

• p(x∣c) represents the probability of observing feature vector x given class c. 

• μc is the mean vector for class c. 

• Σc is the covariance matrix for class c. 

• ∣Σc∣ denotes the determinant of the covariance matrix. 

• The equation uses the multivariate Gaussian distribution formula to compute the likelihood 

of x belonging to class c. This accounts for the correlations between features, allowing for 

more flexible modelling. 

3.5.8. Coarse KNN. 

Coarse KNN is a variation of the KNN algorithm designed to enhance efficiency. It achieves 

this by dividing the training data into clusters and focusing computations on the most relevant 

clusters for classifying new data. By doing so, it reduces the computational load while still 

providing reasonably accurate predictions, making it suitable for handling large datasets and 

scenarios where speed is crucial. 

Distance Calculation:  

Distance(𝑥𝑖, 𝑥𝑗) = √∑𝑘−1
𝑑 (𝑥𝑖, 𝑘 − 𝑥𝑗, 𝑘)2……….. (11) 

Explanation: 

• Distance Calculation: The distance between two data points xi and xj is calculated using 

the Euclidean distance formula. This helps determine how close or similar the points are in 

a d-dimensional space. 

• Majority Voting: For classification, the class of a query point is decided by the majority 

class among its k nearest neighbours. The algorithm finds the k nearest neighbours based 

on their distances to the query point. 
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3.5.9. Ensemble-RUS boosted tree. 

Ensemble-RUS Boosted Tree combines Random Under-Sampling (RUS) and Boosted Trees 

to address class imbalance while boosting predictive performance. The approach is designed 

to tackle scenarios where one class significantly outweighs the others. Initially, weak classifiers 

are set up and example weights are established. These weak classifiers, often decision trees, 

are trained using a weighted training set, giving more importance to misclassified examples. 

Random Under-Sampling (RUS) is then employed to reduce the number of majority class 

instances, creating a more balanced dataset. As the process iterates, weights are updated based 

on the misclassification rates of examples, giving more emphasis to harder-to-classify 

instances. Boosting ensues, with the ensemble combining the weak classifiers and granting 

more weight to those with lower misclassification rates. Ultimately, the ensemble's prediction 

is determined through weighted majority voting, producing a more robust prediction by 

leveraging the strengths of both RUS and Boosted Trees. 

3.5.10. Medium tree. 

A Medium Tree represents a type of decision tree that finds a middle ground between shallow 

and deep trees. It aims to capture a mix of intricate details and broader patterns in the data. 

Shallow trees are simple but might miss complex relationships, while deep trees can overfit 

and memorize noise. Medium trees strike a balance by capturing intermediate-level patterns, 

improving generalization to new data while still preserving relevant information. This approach 

is valuable when seeking a trade-off between complexity and interpretability, and it often 

requires experimentation to determine the optimal tree depth. 

Impurity(node) = 1 − ∑𝑖−1
𝐾 𝑝𝑖

2………. (12) 

Explanation: 

• Impurity Measure: The equation represents the impurity of a node in the decision tree. 

It quantifies how mixed the class labels are within the node. A lower impurity indicates 

that the node contains predominantly examples from a single class. 

• K is the number of classes. 

• pi is the proportion of examples belonging to class i in the node. 

• Decision: The tree splits data by selecting the feature and threshold that minimize 

impurity across child nodes. Medium Trees aim to strike a balance between overly 

simplistic and overly complex trees. 

 

4. Result and Analysis 

After each model has been trained, it is evaluated by feeding the test dataset to it and comparing 

its output with the respective labels. Various metrics, such as accuracy and ROC (Receiver 

Operating Characteristic) curve, are used to compare the models. The ROC curve illustrates 

the trade-off between true and false positive rates for various threshold values. Accuracy is 

defined as the proportion of adequately predicted instances among all instances. The 

performance of the models can be assessed and contrasted by evaluating these metrics. All the 

models were evaluated, and their obtained accuracies are mentioned in Table 2.  
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Table 2. Experimental outcomes. 

Sr No Algorithm 
Accuracy 

(validation) 

Total cost 

(validation) 

Prediction 

speed (obs/sec) 

Training 

time (sec) 

1 Gaussian Naive Bayes 99.5 2 28000 0.75635 

2 Kernel Naive Bayes 99.5 1 5400 1.1389 

3 Linear SVM 99.3 5 3800 6.9315 

4 Quadratic Discriminant 99.3 3 59000 1.1792 

5 Quadratic SVM 99.3 6 1900 5.4965 

6 Coarse tree 22.7 340 170000 0.42124 

7 Fine Gaussian 77 84 1200 6.2402 

8 Coarse KNN 77.3 103 13000 1.1464 

9 Ensemble-RUS Boosted tree 85.7 42 9100 2.9227 

10 Medium tree 85.7 42 220000 1.3979 

Table 2 shows the performance of ten different machine learning algorithms on a specific 

dataset. Each algorithm is ranked based on its accuracy on the validation dataset, which is the 

percentage of correct predictions made by the model. The table also includes information on 

the model's total cost on the validation dataset, which includes factors such as computational 

resources or time required to train the model. The prediction speed of each algorithm is 

measured in observations per second, which indicates how quickly the model can make 

predictions on new data once it has been trained. Finally, the training time for each algorithm 

is also included, which measures the time required to train the model on the dataset. By 

comparing these parameters for each algorithm, one can determine the best-suited algorithm 

for crop prediction. From Table 2, gaussian naive bayes gives the optimum solution for the 

used dataset. 

Table 3. Comparison of different algorithm’s accuracy used on a similar dataset. 

Sr. No. Algorithms Accuracy Ref. 

1 Linear Regression 67% [4] 

2 Random Forest  75% [4] 

3 k-Nearest Neighbor                      97% [4] 

4 Random Forest    95% [7] 

5 Random Forest Classifier      95.12% [9] 

6 Instance-based Learner (Ibk)  97.31% [10] 

7 Random Forest                           97.4% [10] 

8 Gaussian Naive Bayes 99.5% This paper  

9 Kernel Naive Bayes 99.5% This paper 

From Table 2, it is observed that kernel naive bayes, gaussian naive bayes, linear SVM, 

quadratic discriminant, and quadratic SVM showed superior accuracy; while other   models, 

such as coarse KNN, fine Gaussian SVM and coarse tree performed poorly.  Figures 3 and 4 

show the confusion matrices for Gaussian naive bayes and kernel naive bayes respectively. 

Table 3 depicts the comparison of various algorithms applied on a similar dataset. It shows that 

the ML techniques suggested by us have higher accuracy than the techniques used in the 

literature. 

5. Conclusions 

Based on several variables like soil type, and weather, this system employs various machine 

learning algorithms to assist farmers in selecting the crops to grow. The results show that it is 

an effective tool for improving agricultural productivity and profitability. We achieved 99.5% 

accuracy as compared to the results stated in the literature. This system allows farmers to 

optimize their yields and profitability by making data-driven decisions about what crops to 

plant. The application of ML-based systems in agriculture has the potential to transform the 
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industry and contribute to supplying the world's expanding food needs. The system enables the 

planting of crops in a way that maximizes the use of soil components while minimizing the 

wastage of resources. 
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