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ABSTRACT: In the analysis of rectangular reinforced liquid storage tanks, a method assuming 
linear-elastic behavior for material can be used, i.e., the strip method, the moment coefficient 
method, the finite element method, etc. In the analysis of these types of tanks, tank walls can 
be considered as slabs. In this study, tank walls were analyzed as slabs subjected to hydrostatic 
loading; in the analysis, the yield line theory is used because it is more suitable for the linear 
inelastic behavior of reinforced concrete slabs than the ones based on the linear elastic theory. 
An iterative algorithm based on yield line theory is presented for the design of isotropically 
reinforced rectangular concrete slabs supported along all four edges. A computer program is 
coded which predicts the location of yield lines for the slabs depending upon certain 
parameters. As a result of this prediction, the manual design of such slabs can be significantly 
simplified by the use of the coefficient obtained by using the program. It was shown that the 
analytical computation of the ultimate moment per unit length requires the solution of a highly 
nonlinear system of equations. This difficulty was overcome by utilizing an iterative technique 
within the computer program. It also gives the value of the ultimate moment per unit length of 
the yield line. 
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1. Introduction 

The methods based on yield line theory were more suitable for the design of reinforced concrete 
slabs than the other methods based on linear elastic theory—the strip method, the moment 
coefficient method, etc.—because they consider the realistic behavior of such elements. The 
behavior of these slabs consists of four stages under increasing loads and can be listed as elastic, 
cracking, plastic, and collapse. In the initial stage, the distribution of bending moments 
corresponds to the elastic bending moment diagram. When the first crack takes place, the 
second moment of area of the section reduces, and this reduction causes a redistribution of the 
bending moment diagram. In the plastic stage, for an under-reinforced section, rebars start to 
yield as loading increases. This results in spreads along the section where most of the cracks 
concentrate. These failure lines are known as yield lines. At the final stage, the failure lines 
spread along the slab and transform it into a collapse mechanism following an infinitesimal 
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increase in the loads. At this stage, the failure occurs by crushing the concrete in the 
compression zone [1-10]. 

In this study, a computer program was presented based on an iterative algorithm. The 
algorithm uses the yield line theory and obtains the ultimate moment per unit length of an 
isotropically reinforced slab that was subjected to hydrostatic pressure loading. The program 
also predicts the location of yield lines for slabs supported along all four edges. As a result, the 
manual design of such slabs can be significantly simplified by the use of a coefficient obtained 
by using the program. 

2. Yield Line Theory 

2.1. Basic assumptions 

The yield line theory assumes the concrete slab was a rigid plastic material. As a result of this 
assumption, elastic deformations at the collapse were ignored [11–14]. In addition, at collapse, 
the slab was considered to be separated into a number of parts by yield lines, each a rigid 
element. This reduces the deformation to rotations of these parts depending on the boundary 
conditions of the slab. The deformed shape of the slab at collapse has multiple faces. 

Yield line theory applies kinematic theory to reinforced concrete supporting members. 
Therefore, according to kinematic theory, the ultimate failure load of a slab was either equal to 
or smaller than its experimental failure load. If the kinematic mechanism used was the collapse 
mechanism, and if it was possible to have an acceptable moment distribution, the ultimate load 
computed for any assumed collapse mechanism was the closest load to the experimental 
collapse load. In order to be sure that this condition was satisfied, and in cases where 
experimental verification was not possible, it was necessary to determine a statically acceptable 
moment distribution that gives the same failure load for the slab considered. In other words, 
the uniqueness theorem was used to obtain the closest load to the experimental collapse load. 
Experimental studies conducted thus far show that the results obtained using Johansen criteria 
were more conservative than experimental results [4, 7, 10, 12, 15, 18].  

2.2. Application 

The yield line theory was applied in two stages. In the first stage, different possible collapse 
mechanisms were defined depending on the support conditions and loading of the slab. In the 
second stage, the predetermined collapse mechanism with the smallest collapse load was found. 
This was carried out by using either the energy or equilibrium method. 

2.2.1. Possible collapse mechanisms  

Determination of the possible collapse mechanisms was carried out by applying the following 
theorems Johansen [18-21]:  

a) The plastic hinge line between two rigid elements of the slabs passes through the 
intersection of the rotation axis of these elements. In the case where the slab was supported 
along one side, the rotation axis has to coincide with the support line as shown in Figure1. 
If the rotation i of the different slab parts is known, all possible collapse mechanisms can 
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be found by using this theorem. On the other hand, if the collapse mechanism was known, 
the rotation of different slab parts can be approximately predicted. 

b) If the rotation axis of the different slab parts and the ratio of their rotation angles θi to any 
selected part was known, then the collapse mechanism becomes apparent. If the deformed 
slab was cut by a plane paralel to the plane of supports at an arbitrarily selected distance h, 
the intersection lines of this plane with different elements are known as contours. The 
distance between the contours and the rotation axis of an element is h/θi where h is the 
deflection of the plate. These contours, on the other hand, intersect the yield lines. In  this 
case the yield lines were determined by intersecting the rotation axis with contours as 
shown in Figure 1.   

 

 

 

 

 

 

 

 

Figure 1. Determination of the possible collapse mechanisms. 

2.2.2. Analysis methods 

a) Virtual work method 

Let the slab undergo a deflection δ which is compatible with its support conditions. Work done 
by external loads was equated to work done by internal forces. Since the collapse mechanism 
has only linear plastic hinge lines, the virtual work equation becomes: 

 i i nP δ +P δ dxdy=m αds,j j∑               (1)                                                                                                            

where Pi is the point load and δi is the deflection that Pi undergoes, Pj is the uniformly distributed 
load, and δj is the deflection it causes, α is the rotation of the plastic hinge line and mn is the 
bending moment on the unit length of the yield line. It was apparent that deflection δi and δj 
and rotation α can be related to δ. This leads having δi and δj in both sides of Eq.(1), which lead 
to an expression for mn [2,5,13].  
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b) Equilibrium method 

In the equilibrium method, equations were written for each rigid element of the collapse 
mechanism. For n number of rigid elements, 3n number of equilibrium equations were 
obtained. In the virtual work method the work done by shear forces and torsional  moments 
along the yield line were not taken into account because their work was equal to zero. However, 
in the equilibrium method these internal forces, either directly or as a system of statically 
equivalent forces, were required to be considered in the equilibrium equations. 

Solutions of the equilibrium equations gives the nodal forces and dimensional 
parameters of the collapse mechanism. As a result a relationship was obtained between the 
collapse load and the bending moment per unit lenght m [20-22]. It was apparent that the 
solution found will be an upper bound solution. However, it should be noted that the solution 
obtained using a statically acceptable moment distribution for a kinematically acceptable 
collapse mechanism was the closest one to the ultimate solution. 

The equilibrium can either be solved by any direct method or if required an iterative 
approach can be employed by assuming initial values for the dimensional parameters of the 
slab. As a result, for each rigid slab part of the mechanism, a relationship was obtained between 
the loads acting and the bending moment per unit length along the yield line. By comparing 
the values of these moments m1, m2,…, mn for each slab part, new values of these parameters 
were decided. This repetitive process was continued until convergence was obtained. 
 

3. Design of Isotropically Reinforced Concrete Slabs Subjected Tohydrostatic Pressure  

3.1. Algorithm 

The design of reinforced concrete slabs subjected to hydrostatic loading was carried out for 
any support condition using Johansen’s plasticity criteria [4,7,8]. In this criteria, the support 
conditions were taken into account by considering a parameter φ which is equal to 0 for simple 
supports, 1 for fixed supports and between 0 and 1 for elastic-encastre supports. 

The yield line pattern of a rectangular reinforced concrete slab supported along all four 
edges and subjected to hydrostatic pressure is given in Figure 2. The horizontal yield line KL 
separates the slab into four parts. The support conditions of these slabs were all different from 
each other. Therefore, letting m be the ultimate moment per unit length in the slab, the support 
moments of these slab parts become φ1m, φ2m, φ3m, and φ4m. 
 

 

 

 

 

Figure 2. The yield line pattern of a rectangular slabs. 
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Although the yield line KL was known to be horizontal, its position was not accurately 
known. This was due to the fact that the position was dependent upon three unknowns α, β1, 
and β2. Since the ultimate moment per unit length m was not also known, the number of 
unknowns rises to four. 

On the other hand, it was possible to write four equilibrium equations, with each one 
corresponding to one slab part. The forces on each part were dependent on their geometrical 
dimensions and the hydrostatic pressure acting on them. The resultant of the hydrostatic load 
on each part was computed by considering them as a combination of prisms and pyramids. In 
this way, the center of gravity of each load can be obtained as shown in Figure 3. This 
procedure, however, requires the solution of highly nonlinear equations. Even for the special 
case where the support conditions were the same on AD and BC, which means φ1=φ3 and β1= 
β2, it is necessary to solve three equations. Since the analytical solutions were difficult, it was 
preferable to use numerical techniques and to solve the problem iteratively. 
 

 

 

 

 

Figure 3. The center of gravity of load on each slabs part. 

The algoritm presented here predicts the initial values for α,β1, and β2. Using these values the 
hydrostatic loads P1, P2, P3, and P4 acting on each slab part and their application points G1, G2, 
G3, and G4, as shown in Figure 3 were calculated [8,10]. In this case, the equilibrium equations 
become: 
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where di is distance from centroid of ith slab part to the side (see Figure 3), is vertical side 
lenght and b is horizontal side lenght.        

 
The only unknown in the above equations is m. Obtaining the same value for m from 

each equation shows that the initial values of α,β1, and β2 were correct. Otherwise, it becomes 
necessary to repeat the above computation until the values of m obtained from each equation 
were equal to each other. In the case where the slab has one edge free, the solution becomes 
easier. It should be noted that the nodal forces were zero at the intersection of three positive 
yield lines. 
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3.2. Various support conditions  

3.2.1. Slabs with three edges supported and one edge free 
 
a) Case I:b>H     (Figure 4) 
In this case, consideration of the equilibrium equations for only slab parts 1 and 2 is sufficient. 
Carrying out the procedure explained above, the following equations are obtained:    

                                         
                   

(6) 

(7) 
 

In these equations nodal forces KI and KJ(KI = KJ = mβb/H), on the nodal points I and 
J are also considered.Because of equilibrium these should be equal to each other. Hence, 
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2 2 2
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6(β+φ )24[H (1+φ )-β b ]

=                  (8) 

 
β computed from Eq.(8), is substituted into Eq.(6) or Eq. (7) to obtain the value of ultimate 
bending moment per length. 
 

 

 

 

 

 
Figure 4. Slabs with three edges supported and one long edge free. 

b) Case II: b<H   (Figure 5) 
In this case three yield lines occur at collapse as is shown in Figure 5. Considering the 
equilibrium equations for slab parts 1 and 2, it follows:  

 
                                           (9) 

 
                (10) 
            

 
Since both Eqs.(9 and 10) should yield the same value of m, hence: 
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The ultimate moment per unit length is obtained by substituting the value of α which 
is found of from Eq. (11) into Eq. (9) or  Eq.(10). 

It should be noted that for b=H, the yield lines may be similar to or different from any 
given above. 
 

 

 

 

 

 

Figure 5. Slabs with three edges supported and one short edge free. 

3.2.2 Slabs with all edges supported 

a) Case I: Each edge having a different support condition (Figure 6). 
In this case equilibrium equations are written for slab parts 1, 2, 3 and 4, which yields: 
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It was apparent that the equations obtained are highly nonlinear. Hence, it was more 
suitable to employ numerical technique in their solution. 

 
 

 

 

 

 

      
Figure 6. Slabs with each edge having different support condition 

b) Case II: Corresponding edges having the same support conditions (Figure 7). 
In this case slab parts 1 and 3 were identical. It becomes sufficient to substitute   β1 = β2 = β 

and  φ1= φ3 in Eqs. (12,13 and 15). After carrying out the simplifications the expressions for 
the bending moment per unit length for slab parts 1,2, and 3 become: 
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Figure 7. Corresponding edges having the same support conditions 

The solution of the above nonlinear equations was carried out using an iterative technique. 
Calculated values (α and β)  from above equations for different edge conditions are given in 
Table 1. It was apparent that such tables makes it possible to carry out the design of reinforced 
concrete slabs, such as tank walls, subjected to hydrostatic loading manually.. 
 

Table 1. α and β values according to edge ratio of all edges supported slabs with   same support conditions of 
vertical edge 
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                                                                                    φ = 0    : Simple support 
                                                                                                     φ = 1    : Fixed Support 

                                                                                               0<φ<1  : Elastic – encastre 
support 

φ1= φ2= φ3=1 φ1= φ2=0,5 ;  φ3=0 φ1=1 ; φ2= φ3=0 φ1= φ2= φ3=0 

α β α β α β α β 

1,00 0,613 0,481 (*) (*) (*) (*) 0,613 0,481 
1,25 0,604 0,428 0,564 0,454 (*) (*) 0,604 0,428 
1,50 0,598 0,383 0,557 0,410 0,610 0,467 0,598 0,383 
1,75 0,594 0,347 0,552 0,372 0,604 0,430 0,594 0,347 
2,00 0,592 0,316 0,550 0,340 0,600 0,398 0,592 0,316 
2,25 0,530 0,290 0,547 0,313 0,596 0,370 0,590 0,290 
2,50 0,588 0,268 0,545 0,290 0,594 0,344 0,588 0,268 
2,75 0,587 0,248 0,544 0,270 0,592 0,322 0,587 0,248 
3,00 0,586 0,232 0,542 0,252 0,591 0,303 0,586 0,232 

      (*) Collapse mechanism is different 
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4. Conclusions 

The developed equations based on yield line theory were presented for the design of reinforced 
concrete slabs which were supported along four sides and subjected to hydrostatic pressure. It 
was shown that the analytical computation of the ultimate moment per unit lenght requires the 
solution of a highly nonlinear system of equations. This difficulty was overcome by utilizing 
an iterative technique by computer program. It also gives the value of the ultimate moment per 
unit length of the yield line. The developed equations makes it possible to prepare tables that 
contain the values of parameters related to yield lines according to various support conditions 
and the ratio of slab edge lenghts. This in turn makes the design easy to be carried out manually 
for practical purposes. As a result, manual design of such slaws can be significantly simplified 
by the use of coefficient obtained by using the computer. 
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