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ABSTRACT: This study presents the development of an autonomous mobile robot for real-

time object detection and collection by integrating a Convolutional Neural Network (CNN) 

with an Inertial Measurement Unit (IMU). The primary objective is to design, implement, and 

evaluate a sensor-fusion-based robotic system capable of detecting objects through image 

recognition, estimating orientation and motion via inertial sensing, and performing automated 

retrieval tasks in structured and semi-structured environments. The CNN is trained to recognize 

and localize objects using real-time video input, while the IMU provides data on the robot’s 

pose and dynamics. Through sensor fusion algorithms, the system achieves improved 

situational awareness, stability, and navigation accuracy. A closed-loop control framework 

translates sensory data into motion commands for the robot’s differential drive and gripper, 

enabling reliable object approach, grasping, and transport. Experimental results demonstrate 

high classification accuracy and a grasping success rate exceeding 85% in indoor tests. The 

proposed approach shows strong potential for applications in logistics, smart manufacturing, 

and service robotics, where repetitive object-handling tasks can be automated with reliability. 

KEYWORDS: Convolutional Neural Network (CNN); Inertial Measurement Unit (IMU); 

sensor fusion; autonomous robotics; object manipulation; real-time control 

1. Introduction 

The automation of repetitive tasks has become a cornerstone of modern industrial, logistic, and 

service systems. Among such tasks, the autonomous detection and collection of objects 

represents a critical component for increasing operational efficiency, ensuring safety in 

hazardous environments, and reducing dependency on manual labor. In recent years, rapid 

advancements in artificial intelligence (AI), particularly in computer vision and sensor fusion, 

have enabled the development of intelligent mobile robotic systems capable of perceiving and 

interacting with complex, unstructured environments [1, 2]. Traditional robotic systems have 

relied heavily on predefined paths and structured object placements, which limit their 

adaptability in dynamic settings. To address this, current trends focus on integrating machine 
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learning-based vision systems with inertial and proprioceptive sensing to enable real-time 

situational awareness. Convolutional Neural Networks (CNNs), renowned for their 

performance in image classification and object detection tasks, have been widely adopted in 

robotics for visual perception [3, 4]. At the same time, Inertial Measurement Units (IMUs), 

consisting of tri-axial accelerometers, gyroscopes, and sometimes magnetometers, are critical 

for estimating the robot’s spatial orientation and motion state [5]. By fusing the output of CNNs 

with IMU data through sensor fusion techniques such as Extended Kalman Filters (EKF), the 

robot gains an enhanced multimodal understanding of its surroundings, significantly improving 

object detection robustness and motion control precision [6, 7]. 

The use of CNNs in robotics is a transformative development, enabling high-performance 

image understanding at the edge with real-time object detection, semantic segmentation, and 

localization capabilities. Architectures such as YOLOv8, EfficientDet, and Faster R-CNN have 

been widely applied in robotic vision pipelines, providing trade-offs between detection 

accuracy and latency [8]. These networks are typically trained on large-scale datasets such as 

COCO, Open Images, or custom datasets, and then fine-tuned for domain-specific applications. 

In the context of object collection, the CNN is responsible for identifying and locating target 

objects within the robot’s field of view, providing bounding box coordinates and class labels 

as input to the control system. 

However, vision-based object detection systems alone are prone to errors under poor 

lighting conditions, occlusions, and fast motion. To mitigate these issues, complementary 

sensory data from IMUs is used to track the robot’s motion and predict pose changes. IMUs 

offer high-frequency measurements of linear acceleration and angular velocity, which can be 

integrated over time to estimate displacement and orientation. Nevertheless, standalone IMUs 

suffer from drift due to accumulated integration errors. Therefore, sensor fusion with vision 

data is employed to correct these errors and enhance localization reliability [9]. 

Sensor fusion is a central pillar in modern robotics, especially for mobile and autonomous 

systems. Techniques such as EKF, Unscented Kalman Filter (UKF), Particle Filter (PF), and 

learning-based fusion networks are commonly used to merge data from heterogeneous sensors 

[10]. For instance, visual-inertial odometry (VIO) and simultaneous localization and mapping 

(SLAM) systems such as ORB-SLAM3 and VINS-Fusion have demonstrated robust 

localization capabilities by integrating camera images and inertial readings [11, 12]. In object 

manipulation contexts, the fusion of CNN-based object detection with IMU-based pose 

estimation allows for robust tracking of both the robot and target object positions, facilitating 

precise actuation of the gripper mechanism. 

Autonomous grasping and manipulation present unique challenges in robotics. Once an 

object is detected, the robot must plan a collision-free path, orient its manipulator, and execute 

a grasp with sufficient force and precision. In many systems, this process is modeled using 

motion planning algorithms such as Rapidly-exploring Random Trees and Probabilistic 

Roadmaps, and control strategies such as Model Predictive Control (MPC) or inverse 

kinematics-based feedback loops [13]. The robot must also adapt to perturbations or 

uncertainties in object position or motion, which are accounted for through closed-loop 

feedback using sensory input from the CNN-IMU system. 

Several recent studies have highlighted the benefits of integrating CNNs and IMUs for 

robotic manipulation. Husni et al. [14] proposed a real-time CNN-IMU fusion algorithm for 

autonomous waste collection robots, demonstrating high classification accuracy and efficient 
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object pickup in cluttered environments. Similarly, Zhang et al. [15] integrated IMU-based 

motion estimation with vision-based object detection to improve the stability of mobile robotic 

platforms in uneven terrain. In the healthcare domain, robots equipped with CNN-IMU systems 

have been developed for autonomous delivery of medical supplies in hospitals, operating 

reliably amidst dynamic human environments [16]. 

In terms of hardware, embedded computing platforms such as NVIDIA Jetson Nano, 

Raspberry Pi 4, and STM32 microcontrollers have been employed for onboard processing of 

CNN inference and IMU data acquisition [17]. These systems enable real-time execution of 

CNN models using frameworks such as TensorRT or OpenVINO, allowing for low-latency 

decisions on constrained hardware. Furthermore, communication protocols such as ROS 

(Robot Operating System) and MQTT support modular system integration, facilitating 

seamless coordination between sensors, actuators, and decision-making modules. 

The integration of CNN and IMU is particularly impactful in real-world applications 

requiring robust perception and precise motion control. In warehouse automation, such systems 

are used for object sorting and shelf management [18]. In agriculture, they assist in fruit-

picking robots that must identify ripe produce and navigate through complex environments 

[19]. In the military and defense sector, CNN-IMU guided robots are used for object retrieval 

in hazardous zones with GPS-denied navigation [20]. 

Despite these advancements, there remain key challenges in developing CNN-IMU 

robots for autonomous object collection. First, training CNN models with limited labeled data 

for specific domains can restrict generalization. Techniques such as transfer learning, data 

augmentation, and self-supervised learning are being explored to overcome these limitations 

[21]. Second, ensuring time synchronization and calibration between the vision and inertial 

sensors is non-trivial, particularly under high-speed dynamics. Research into real-time sensor 

calibration, clock drift compensation, and hardware co-location is ongoing to improve fusion 

accuracy [22]. Finally, robust testing in dynamic environments with multiple moving objects 

remains an active area of research, where advanced multi-object tracking and intention 

prediction models are being introduced [23]. 

In light of these developments, this paper presents the design and implementation of a 

robotic system capable of detecting and collecting objects autonomously using an integrated 

CNN-IMU framework. The system incorporates a webcam-based vision module for object 

detection, an IMU for motion estimation, and a microcontroller-based control unit for actuator 

coordination. Through sensor fusion, the robot is able to dynamically localize target objects, 

plan an approach trajectory, and manipulate objects with high accuracy. The proposed system 

emphasizes a lightweight CNN model fine-tuned for real-time inference on embedded 

hardware [2, 3], the incorporation of a 6-DoF IMU for robust pose estimation [5, 6], and the 

use of sensor fusion through rule-based alignment and filter-based integration to minimize 

detection errors [7, 11]. A closed-loop motion control architecture translates fused sensing data 

into actuation commands for gripper and mobile base coordination [10, 12]. The system was 

validated in indoor scenarios, achieving high detection accuracy, precise alignment, and an 

object pickup success rate exceeding 85% [14]. 

This research makes several novel contributions. It introduces a real-time CNN-IMU 

integration tailored for low-cost embedded platforms such as Raspberry Pi 4 and Arduino 

Nano, enabling autonomous object collection [8, 14]. It presents a modular control strategy 

linking sensor fusion outputs to differential drive and gripper mechanisms, improving 
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alignment and grasp success under occlusion or drift [5, 6]. It provides a performance 

evaluation demonstrating high detection precision, robust pose estimation, and reliable object 

retrieval [13, 15]. It compares multimodal fusion against vision-only and IMU-only baselines, 

showing superior reliability [6, 11, 24]. Finally, it discusses current limitations and possible 

enhancements, including advanced filtering techniques, hardware accelerators, and 

deployment in semi-structured or outdoor environments [12, 17]. 

While traditional vision-guided robot systems rely solely on camera data for object 

localization, they often require structured environments or predefined fixtures to function 

effectively [16, 20]. Multisensor solutions such as VINS-Mono, OKVIS, and ROVIO can 

perform real-time visual-inertial SLAM but are generally too resource-intensive for lightweight 

retrieval-oriented platforms [6, 11, 12]. More recent systems such as Dynamic-VINS and LVID 

SLAM combine object detection and inertial input for dynamic mapping and pose estimation, 

yet they often depend on RGB-D cameras or external sensors not feasible for low-cost 

embedded systems [24, 25]. In contrast, the approach presented here emphasizes embedded, 

cost-effective hardware with a focus on object detection and pick-and-place functionality. 

Architectures such as VIPose have demonstrated the potential for deep CNN fusion of visual 

and inertial features, though they primarily target precise six-degree-of-freedom pose tracking 

in controlled scenarios [26]. This work adapts similar fusion concepts to physical object 

collection in robotics, using lightweight algorithms and real-time feedback for practical 

deployment. 

2. Robot Design and Methods 

The proposed robotic system is designed to autonomously detect, approach, and collect objects 

through the integration of machine vision and inertial sensing. The system comprises three 

primary subsystems: the mechanical structure, embedded electronics, and perception-control 

architecture. Each component is designed to operate in synergy, enabling real-time object 

detection and motion planning through a CNN-IMU fusion framework. 

2.1.Mechanical design. 

The mechanical design of the robot was developed in SolidWorks, a widely used 3D computer-

aided design (CAD) platform for robotic prototyping. The architecture consists of a mobile 

base, a gripper mechanism, and an object-carrying basket, all mounted on a chassis derived 

from the Eddie Robot platform. The mobile base provides stability, traction, and load-bearing 

capability, while the gripper is customized to handle cylindrical and irregularly shaped objects 

such as bottles and cans. Figure 1 presents the complete mechanical design, including an 

isometric view highlighting the component layout (Fig. 1a), a side view emphasizing wheel 

clearance and gripper articulation (Fig. 1b), and the final assembled physical prototype (Fig. 

1c). The gripper mechanism is actuated by a servo motor that delivers controlled angular 

displacement for reliable grasping. The end effector is designed with compliant gripping force 

to minimize the risk of damaging fragile objects. The basket is dimensioned to store multiple 

retrieved items and is mounted to the base using a shock-dampening system to reduce 

vibrations during locomotion. 
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Figure 1. Robot design: (a) Isometric view; (b) Side view; (c) current design.  

2.2.Embedded system architecture. 

The system employs a modular embedded architecture for both sensing and actuation. An 

Arduino Nano serves as the central controller, chosen for its compact form factor and adequate 

input/output capabilities. It interfaces seamlessly with the various subsystems, as illustrated in 

the functional block diagrams (Figures 2 and 3). 

 
Figure 2. Block diagram of gripper. 
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Figure. 3. Block diagram of the object detection. 

Key components include: 

‒ Inertial Measurement Unit (GY-25 IMU): Provides real-time measurements of pitch, roll, 

yaw, angular velocity, and linear acceleration. Data is transmitted via I²C to the 

microcontroller at ~100 Hz sampling rate. 

‒ Servo Motor Driver: Controls the gripper through PWM signals generated by the 

microcontroller. 

‒ DC Motor Driver (L298N): Drives the differential wheeled base, enabling forward, 

backward, and turning motions. 

‒ Webcam Module: Captures image data for CNN-based object detection, connected to a 

Raspberry Pi (off-board) via USB. 

Power is supplied by a 7.4V LiPo battery regulated to 5V and 12V rails for logic and 

actuation respectively. The system also includes onboard indicators and safety fuses for 

operational integrity. 

2.3.Perception and decision system. 

The perception system integrates two sensor modalities: a CNN-based visual recognition 

engine and an IMU for motion estimation. Together, these enable the robot to identify objects, 

localize their positions, and adjust its motion accordingly. 

2.3.1. Convolutional Neural Network (CNN). 

The object detection algorithm is implemented using a pre-trained CNN architecture, fine-

tuned on a dataset of labeled images representing the target objects. Training is conducted 

offline using the OpenCV deep learning module in combination with the TensorFlow/Keras 

framework. The inference pipeline begins with real-time image acquisition from a 720p 

webcam, followed by pre-processing steps in which frames are resized, normalized, and 

transformed into input tensors. The CNN then classifies objects and predicts bounding boxes, 

after which non-maximum suppression is applied to remove redundant detections. A simplified 

workflow is presented in Figure 4. The system achieves an average inference time of 
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approximately 120 ms per frame on a Raspberry Pi 4, making it suitable for semi-real-time 

applications. The detected object coordinates are transmitted to the Arduino controller via serial 

communication, where they are used for motion planning and control. 

 
Figure 4. The workflow of an image classification system. 

2.3.2. Inertial measurement unit (IMU). 

The GY-25 IMU module provides six degrees of freedom (6-DoF) motion tracking, 

incorporating an accelerometer to measure linear acceleration along the X, Y, and Z axes, and 

a gyroscope to measure angular velocity around the same axes. In some configurations, an 

additional magnetometer is included to estimate heading based on the Earth’s magnetic field. 

The raw IMU data are processed using a complementary filter algorithm to reduce sensor noise 

and produce smoother orientation estimates. Among the estimated parameters, the yaw angle 

is particularly critical, as it allows the robot to align its heading with the target object. 

Furthermore, the IMU contributes to short-range drift-corrected position estimation, especially 

in scenarios where visual tracking becomes unreliable. 

2.3.3.  Sensor fusion and control strategy. 

The The fusion of CNN-based vision and IMU data is implemented through a rule-based state 

machine. The control algorithm interprets object position provided by the CNN and orientation 

estimated by the IMU to generate motion commands. These commands follow a sequential 

logic in which the robot first rotates to align with the target object until its center coincides 

with the center of the visual field. Once aligned, the robot advances toward the object while 

continuously tracking its position. When the object is within grasping distance, the gripper 

mechanism is engaged to secure it, after which the robot retracts and deposits the object into 

the carrying basket. Future enhancements to this framework will incorporate Kalman filtering 

for more robust sensor fusion as well as proportional–integral–derivative (PID) control for 
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improved motion stabilization. Overall, the robot’s design emphasizes modularity, real-time 

operation, and low-cost hardware integration. By combining vision and inertial sensing, the 

system achieves greater autonomy and robustness in object collection tasks. The subsequent 

section presents the results of real-world test scenarios that validate the effectiveness of this 

design. 

2.4.Algorithm implementation and system control. 

The The implementation of the object collection algorithm involves multiple integrated 

modules running on an embedded platform (Raspberry Pi 4), with control commands relayed 

to an Arduino Nano that interfaces with the actuators. The primary algorithmic stages include 

object detection using a Convolutional Neural Network (CNN), orientation estimation from an 

Inertial Measurement Unit (IMU), sensor fusion for alignment accuracy, and motion control 

for object pickup. The CNN model, trained on a dataset of labeled object classes, performs 

inference on real-time camera input using the Ultralytics YOLOv5 framework optimized for 

ARM-based processors. The detected object coordinates are subsequently translated into robot-

relative position targets. 

In parallel, the IMU provides continuous feedback on orientation parameters (yaw, pitch, 

and roll) and linear acceleration, which are used to stabilize navigation, particularly when 

approaching rotated or angled objects. Fusion of CNN-based positional data with IMU 

orientation information is achieved through a rule-based decision tree that aligns the robot’s 

heading before advancing toward the target. The control logic is implemented through a finite 

state machine (FSM), which governs the robot’s behavior across five states: SEARCH, 

ALIGN, ADVANCE, GRASP, and RETURN. Transitions between these states are triggered 

by sensory thresholds; for instance, when the detected object enters the central region of the 

frame and the orientation error falls within ±5°, the FSM transitions from ALIGN to 

ADVANCE. 

Motion control is carried out through a differential drive configuration, where velocity 

and turning commands are generated based on real-time feedback. A proportional controller 

(P-controller) is employed for angular correction, while a fixed forward velocity ensures 

stability during approach. The gripper mechanism is actuated using a servo motor, with opening 

and closing durations experimentally tuned to achieve reliable grasping. This architecture 

provides a modular and interpretable control framework well suited for embedded applications. 

Future work may replace the FSM with a learning-based policy or introduce adaptive 

proportional–integral–derivative (PID) control to improve responsiveness and adaptability in 

unstructured environments. 

3. Results and Discussion 

This section presents and analyzes the experimental results obtained from the object detection 

system integrating Convolutional Neural Networks (CNN) with motion data from the Inertial 

Measurement Unit (IMU). The objective of these experiments is to evaluate the robot’s ability 

to detect, classify, and collect objects in real time using multi-sensor input. The results are 

discussed with respect to system performance, detection accuracy, and the effectiveness of 

sensor integration. 

3.1.CNN-based object detection results. 
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The object detection subsystem, powered by a CNN model fine-tuned for real-time 

classification, demonstrated strong performance across various object types. Figure 5 shows 

the result of a successfully classified water bottle, where the CNN model outputs a bounding 

box along with the class label and confidence score, while Figure 6 further illustrates the 

model’s robustness when presented with multiple objects simultaneously. On average, 

detection confidence across all tested objects exceeded 90%, particularly under well-lit and 

unobstructed conditions. The CNN model achieved inference speeds of approximately 8–9 

frames per second (FPS) on the Raspberry Pi 4 platform. Although this rate may not be 

sufficient for high-speed robotic applications, it is adequate for controlled indoor environments 

in which the robot operates at a moderate pace. Some limitations were observed under poor 

lighting conditions and in cases of partial occlusion, where detection accuracy decreased 

slightly. These challenges highlight the need for enhanced pre-processing techniques or the 

inclusion of more diverse training datasets. Overall, the results confirm the reliability of CNNs 

as vision modules for autonomous object recognition and validate the integration of lightweight 

deep learning models on embedded platforms. 

 
Figure 5. Image classification of a water bottle. 

 
Figure 6. Image classification of multiple objects. 

3.2.IMU sensor data and motion estimation. 

The IMU sensor captured real-time kinematic data including acceleration, angular velocity, 

and orientation. The individual sensor outputs are illustrated in Figures 7–9: 
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Figure. 7. Acceleration Data 

 

Figure 8. Gyroscope Data 

 

Figure 9. Magnetometer Data 

 

Figure 10. Sensor Fusion Data 

 

3.2.1. Accelerometer data. 

Figure 7 shows the raw acceleration data across the X, Y, and Z axes. These readings reflect 

the robot’s movement patterns, with peaks corresponding to acceleration during forward 

motion and dips during braking. Such data is critical for estimating displacement over time, 

particularly in scenarios where visual feedback is unavailable. 

3.2.2. Gyroscope data. 

Figure 8 depicts angular velocity readings from the gyroscope. These values allow the system 

to monitor rotation rates and infer changes in heading, which is particularly important during 

turning maneuvers and for aligning the robot with detected objects. 

3.2.3. Magnetometer and orientation estimation. 

Although optional, the magnetometer provides heading correction by referencing Earth’s 

magnetic field. Sensor fusion between the gyroscope, accelerometer, and magnetometer 

enables robust yaw estimation, especially when drift accumulates in IMU-only calculations. 

Figures 7–9 collectively illustrate raw IMU data from accelerometers, gyroscopes, and 

magnetometers. To quantify the IMU’s contribution, trials were conducted with and without 

IMU-based orientation feedback. Without IMU integration, the robot misaligned in 32% of 
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trials when navigating toward rotated targets, while the inclusion of IMU data reduced 

misalignment to 9%, representing a 23% improvement in rotational tracking. Despite relying 

on raw sensor fusion, IMU feedback clearly enhanced the system’s heading estimation during 

motion. 

3.3. Sensor fusion and environmental awareness. 

Figure 10 illustrates the fusion of IMU and visual data, which significantly improved the robot's 

ability to track its pose and estimate object locations. The fusion algorithm integrates bounding 

box coordinates obtained from the CNN with orientation data from the IMU, maintaining 

accurate alignment with targets even under transient occlusion or motion blur. Testing revealed 

notable benefits, including improved tracking stability, smoother navigation due to drift 

correction, and reduced grasping errors through compensation for noisy or misaligned visual 

detections. These findings highlight the importance of multimodal sensing for robust 

perception in dynamic environments. The current implementation employs a rule-based state 

machine for control and sensor fusion. While this deterministic approach enables fast 

integration on microcontrollers, it lacks adaptability. More advanced techniques such as 

Extended Kalman Filters (EKF) or Unscented Kalman Filters (UKF) could provide 

probabilistic modeling of uncertainty, and learning-based controllers such as reinforcement 

learning or LSTM-based fusion could offer long-term adaptability. However, these methods 

were not implemented due to computational and integration constraints, which are 

acknowledged as a limitation of the present system. 

3.4. Object grasping and retrieval performance. 

Following detection and alignment, the robot executed object collection tasks through 

coordinated movements controlled by the Arduino Nano. The success rate for object pickup 

exceeded 85% in structured scenarios and reached approximately 72% in cluttered or uneven 

environments. These limitations are largely attributed to the rigid plastic design of the gripper. 

Future iterations will explore compliant gripper mechanisms using silicone or soft robotics 

principles to improve adaptability, particularly for deformable or irregularly shaped objects. 

Performance was strongly influenced by alignment accuracy derived from CNN-IMU fusion, 

which ensured that the gripper was guided to the correct location. Mechanical limitations 

occasionally caused slippage or failed pickups, indicating opportunities for mechanical 

redesign. Additionally, latency in the feedback loop introduced small delays between detection 

and actuation, which could be minimized through higher-bandwidth communication or 

predictive control strategies. 

3.5. Comparative analysis and system evaluation. 

Compared to vision-only systems, the CNN-IMU robot demonstrated significantly higher 

reliability in navigation and object engagement tasks. While CNN-based approaches alone are 

prone to errors from visual ambiguities, the integration of inertial sensing reduced uncertainty 

and improved task success under challenging conditions. The modular design further allows 

easy adaptation to different object types or operational contexts, for example, by retraining the 

CNN on domain-specific datasets or adjusting control thresholds. Relative to a vision-only 

baseline, the CNN-IMU system improved task success by 26%. However, this work does not 
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directly benchmark against other state-of-the-art CNN-IMU platforms such as VIPose, LVID-

SLAM, or Dynamic-VINS, which limits claims of broader superiority. 

3.6. Real-world deployment considerations. 

Although this study focuses on indoor conditions, real-world applications will encounter 

uneven terrain, variable lighting, and dynamic obstacles. Such factors could degrade CNN 

detection performance and IMU stability. For instance, outdoor lighting may saturate visual 

sensors, and terrain vibrations may exacerbate IMU drift. Future work should therefore 

integrate adaptive image pre-processing, outdoor-optimized datasets, and advanced IMU filters 

with dynamic bias correction to maintain reliability in diverse environments. 

3.7 Limitations and future work. 

While the experimental results validate the proposed system’s functionality, several limitations 

remain. The Raspberry Pi 4 imposes constraints on the complexity of CNN architectures that 

can be deployed; edge accelerators such as the NVIDIA Jetson Nano or Coral TPU could 

enable higher inference speeds. Long-term IMU-only navigation exhibited drift despite sensor 

fusion, highlighting the need for advanced filtering techniques such as EKF or adaptive fusion. 

Autonomy is currently limited by reliance on rule-based control, which could be replaced with 

learning-based policies to improve adaptability. Furthermore, all experiments were conducted 

in indoor laboratory conditions, whereas real-world deployment will require robustness to 

terrain variability, dynamic obstacles, and environmental noise. 

In summary, the results demonstrate that integrating CNN and IMU sensors significantly 

enhances robotic perception and object handling. Through real-time fusion of visual and 

inertial data, the robot achieved robust object detection, accurate orientation tracking, and high 

retrieval success, establishing a promising foundation for broader applications in autonomous 

systems. 

4. Conclusions 

This study presented the design, development, and evaluation of an autonomous mobile robot 

capable of detecting, tracking, and collecting objects through the integration of a Convolutional 

Neural Network (CNN) and an Inertial Measurement Unit (IMU). The fusion of vision-based 

and inertial sensing enhanced the robot’s environmental awareness, enabling reliable object 

localization and navigation in real time. By combining a lightweight CNN model with 

embedded IMU feedback, the system achieved high accuracy in object classification and 

effective pose estimation during dynamic motion. Experimental results confirmed that sensor 

fusion significantly improved robustness, particularly in scenarios involving visual occlusion 

or rapid movements. The robot achieved a success rate of over 85% in structured object 

retrieval tasks and demonstrated resilience in cluttered conditions due to its orientation-

corrected control logic. Furthermore, the integration of onboard computation, modular 

mechanical design, and closed-loop feedback between perception and actuation proved 

effective for scalable and adaptable robotic applications. The proposed system has potential for 

deployment in logistics automation, assistive robotics, smart manufacturing, and 

environmental monitoring. Its flexible design allows for retraining of the CNN model for 

different object classes and mechanical adaptation for domain-specific tasks. Future work will 
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focus on improving computational efficiency using edge AI accelerators such as the NVIDIA 

Jetson Nano or Google Coral, enhancing motion planning with learning-based control 

strategies and predictive algorithms, extending operation to outdoor and semi-structured 

environments where illumination and terrain variability present challenges, and implementing 

advanced sensor fusion techniques, including the Extended Kalman Filter (EKF) or 

probabilistic SLAM, for accurate global localization and mapping. In conclusion, the 

integration of deep learning-based vision with inertial sensing provides a promising pathway 

for developing cost-effective and reliable autonomous systems capable of real-world object 

manipulation, and the findings of this research establish a solid foundation for advancing 

intelligent, sensor-driven robotics. 
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