Advanced Mechanical and
Mechatronic Systems

Research Article
Volume 2(1), 2026, 1-15
https://doi.org/10.53623/amms.v2i1.758

A Robot for Collecting Objects Based on the
Convolutional Neural Network Method and Inertial
Measurement Unit Sensor

Iffah Syafigah?!, Daniel S. Pamungkas®*, Nurul Amira Mohd Ramli?

Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei Darussalam
2Electrical Department, Politeknik Negeri Batam,Batam, Indonesia

3Department of Mechanical and Mechatronics Engineering, Faculty of Engineering and Science, Curtin University Malaysia,
Sarawak, Malaysia

*Correspondence: daniel@polibatam.ac.id

SUBMITTED: 4 July 2025; REVISED: 7 August 2025; ACCEPTED: 10 August 2025

ABSTRACT: This study presents the development of an autonomous mobile robot for real-
time object detection and collection by integrating a Convolutional Neural Network (CNN)
with an Inertial Measurement Unit (IMU). The primary objective is to design, implement, and
evaluate a sensor-fusion-based robotic system capable of detecting objects through image
recognition, estimating orientation and motion via inertial sensing, and performing automated
retrieval tasks in structured and semi-structured environments. The CNN is trained to recognize
and localize objects using real-time video input, while the IMU provides data on the robot’s
pose and dynamics. Through sensor fusion algorithms, the system achieves improved
situational awareness, stability, and navigation accuracy. A closed-loop control framework
translates sensory data into motion commands for the robot’s differential drive and gripper,
enabling reliable object approach, grasping, and transport. Experimental results demonstrate
high classification accuracy and a grasping success rate exceeding 85% in indoor tests. The
proposed approach shows strong potential for applications in logistics, smart manufacturing,
and service robotics, where repetitive object-handling tasks can be automated with reliability.

KEYWORDS: Convolutional Neural Network (CNN); Inertial Measurement Unit (IMU);
sensor fusion; autonomous robotics; object manipulation; real-time control

1. Introduction

The automation of repetitive tasks has become a cornerstone of modern industrial, logistic, and
service systems. Among such tasks, the autonomous detection and collection of objects
represents a critical component for increasing operational efficiency, ensuring safety in
hazardous environments, and reducing dependency on manual labor. In recent years, rapid
advancements in artificial intelligence (Al), particularly in computer vision and sensor fusion,
have enabled the development of intelligent mobile robotic systems capable of perceiving and
interacting with complex, unstructured environments [1, 2]. Traditional robotic systems have
relied heavily on predefined paths and structured object placements, which limit their
adaptability in dynamic settings. To address this, current trends focus on integrating machine

1


https://doi.org/10.53623/amms.v2i1.758
mailto:daniel@polibatam.ac.id

Advanced Mechanical and Mechatronic Systems 2(1), 2026, 1-15

learning-based vision systems with inertial and proprioceptive sensing to enable real-time
situational awareness. Convolutional Neural Networks (CNNs), renowned for their
performance in image classification and object detection tasks, have been widely adopted in
robotics for visual perception [3, 4]. At the same time, Inertial Measurement Units (IMUs),
consisting of tri-axial accelerometers, gyroscopes, and sometimes magnetometers, are critical
for estimating the robot’s spatial orientation and motion state [5]. By fusing the output of CNNs
with IMU data through sensor fusion techniques such as Extended Kalman Filters (EKF), the
robot gains an enhanced multimodal understanding of its surroundings, significantly improving
object detection robustness and motion control precision [6, 7].

The use of CNNs in robotics is a transformative development, enabling high-performance
image understanding at the edge with real-time object detection, semantic segmentation, and
localization capabilities. Architectures such as YOLOVS, EfficientDet, and Faster R-CNN have
been widely applied in robotic vision pipelines, providing trade-offs between detection
accuracy and latency [8]. These networks are typically trained on large-scale datasets such as
COCO, Open Images, or custom datasets, and then fine-tuned for domain-specific applications.
In the context of object collection, the CNN is responsible for identifying and locating target
objects within the robot’s field of view, providing bounding box coordinates and class labels
as input to the control system.

However, vision-based object detection systems alone are prone to errors under poor
lighting conditions, occlusions, and fast motion. To mitigate these issues, complementary
sensory data from IMUs is used to track the robot’s motion and predict pose changes. IMUs
offer high-frequency measurements of linear acceleration and angular velocity, which can be
integrated over time to estimate displacement and orientation. Nevertheless, standalone IMUs
suffer from drift due to accumulated integration errors. Therefore, sensor fusion with vision
data is employed to correct these errors and enhance localization reliability [9].

Sensor fusion is a central pillar in modern robotics, especially for mobile and autonomous
systems. Techniques such as EKF, Unscented Kalman Filter (UKF), Particle Filter (PF), and
learning-based fusion networks are commonly used to merge data from heterogeneous sensors
[10]. For instance, visual-inertial odometry (VI10) and simultaneous localization and mapping
(SLAM) systems such as ORB-SLAM3 and VINS-Fusion have demonstrated robust
localization capabilities by integrating camera images and inertial readings [11, 12]. In object
manipulation contexts, the fusion of CNN-based object detection with IMU-based pose
estimation allows for robust tracking of both the robot and target object positions, facilitating
precise actuation of the gripper mechanism.

Autonomous grasping and manipulation present unique challenges in robotics. Once an
object is detected, the robot must plan a collision-free path, orient its manipulator, and execute
a grasp with sufficient force and precision. In many systems, this process is modeled using
motion planning algorithms such as Rapidly-exploring Random Trees and Probabilistic
Roadmaps, and control strategies such as Model Predictive Control (MPC) or inverse
kinematics-based feedback loops [13]. The robot must also adapt to perturbations or
uncertainties in object position or motion, which are accounted for through closed-loop
feedback using sensory input from the CNN-IMU system.

Several recent studies have highlighted the benefits of integrating CNNs and IMUs for
robotic manipulation. Husni et al. [14] proposed a real-time CNN-IMU fusion algorithm for
autonomous waste collection robots, demonstrating high classification accuracy and efficient
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object pickup in cluttered environments. Similarly, Zhang et al. [15] integrated IMU-based
motion estimation with vision-based object detection to improve the stability of mobile robotic
platforms in uneven terrain. In the healthcare domain, robots equipped with CNN-IMU systems
have been developed for autonomous delivery of medical supplies in hospitals, operating
reliably amidst dynamic human environments [16].

In terms of hardware, embedded computing platforms such as NVIDIA Jetson Nano,
Raspberry Pi 4, and STM32 microcontrollers have been employed for onboard processing of
CNN inference and IMU data acquisition [17]. These systems enable real-time execution of
CNN models using frameworks such as TensorRT or OpenVINO, allowing for low-latency
decisions on constrained hardware. Furthermore, communication protocols such as ROS
(Robot Operating System) and MQTT support modular system integration, facilitating
seamless coordination between sensors, actuators, and decision-making modules.

The integration of CNN and IMU is particularly impactful in real-world applications
requiring robust perception and precise motion control. In warehouse automation, such systems
are used for object sorting and shelf management [18]. In agriculture, they assist in fruit-
picking robots that must identify ripe produce and navigate through complex environments
[19]. In the military and defense sector, CNN-IMU guided robots are used for object retrieval
in hazardous zones with GPS-denied navigation [20].

Despite these advancements, there remain key challenges in developing CNN-IMU
robots for autonomous object collection. First, training CNN models with limited labeled data
for specific domains can restrict generalization. Techniques such as transfer learning, data
augmentation, and self-supervised learning are being explored to overcome these limitations
[21]. Second, ensuring time synchronization and calibration between the vision and inertial
sensors is non-trivial, particularly under high-speed dynamics. Research into real-time sensor
calibration, clock drift compensation, and hardware co-location is ongoing to improve fusion
accuracy [22]. Finally, robust testing in dynamic environments with multiple moving objects
remains an active area of research, where advanced multi-object tracking and intention
prediction models are being introduced [23].

In light of these developments, this paper presents the design and implementation of a
robotic system capable of detecting and collecting objects autonomously using an integrated
CNN-IMU framework. The system incorporates a webcam-based vision module for object
detection, an IMU for motion estimation, and a microcontroller-based control unit for actuator
coordination. Through sensor fusion, the robot is able to dynamically localize target objects,
plan an approach trajectory, and manipulate objects with high accuracy. The proposed system
emphasizes a lightweight CNN model fine-tuned for real-time inference on embedded
hardware [2, 3], the incorporation of a 6-DoF IMU for robust pose estimation [5, 6], and the
use of sensor fusion through rule-based alignment and filter-based integration to minimize
detection errors [7, 11]. A closed-loop motion control architecture translates fused sensing data
into actuation commands for gripper and mobile base coordination [10, 12]. The system was
validated in indoor scenarios, achieving high detection accuracy, precise alignment, and an
object pickup success rate exceeding 85% [14].

This research makes several novel contributions. It introduces a real-time CNN-IMU
integration tailored for low-cost embedded platforms such as Raspberry Pi 4 and Arduino
Nano, enabling autonomous object collection [8, 14]. It presents a modular control strategy
linking sensor fusion outputs to differential drive and gripper mechanisms, improving
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alignment and grasp success under occlusion or drift [5, 6]. It provides a performance
evaluation demonstrating high detection precision, robust pose estimation, and reliable object
retrieval [13, 15]. It compares multimodal fusion against vision-only and IMU-only baselines,
showing superior reliability [6, 11, 24]. Finally, it discusses current limitations and possible
enhancements, including advanced filtering techniques, hardware accelerators, and
deployment in semi-structured or outdoor environments [12, 17].

While traditional vision-guided robot systems rely solely on camera data for object
localization, they often require structured environments or predefined fixtures to function
effectively [16, 20]. Multisensor solutions such as VINS-Mono, OKVIS, and ROVIO can
perform real-time visual-inertial SLAM but are generally too resource-intensive for lightweight
retrieval-oriented platforms [6, 11, 12]. More recent systems such as Dynamic-VINS and LVID
SLAM combine object detection and inertial input for dynamic mapping and pose estimation,
yet they often depend on RGB-D cameras or external sensors not feasible for low-cost
embedded systems [24, 25]. In contrast, the approach presented here emphasizes embedded,
cost-effective hardware with a focus on object detection and pick-and-place functionality.
Architectures such as VIPose have demonstrated the potential for deep CNN fusion of visual
and inertial features, though they primarily target precise six-degree-of-freedom pose tracking
in controlled scenarios [26]. This work adapts similar fusion concepts to physical object
collection in robotics, using lightweight algorithms and real-time feedback for practical
deployment.

2. Robot Design and Methods

The proposed robotic system is designed to autonomously detect, approach, and collect objects
through the integration of machine vision and inertial sensing. The system comprises three
primary subsystems: the mechanical structure, embedded electronics, and perception-control
architecture. Each component is designed to operate in synergy, enabling real-time object
detection and motion planning through a CNN-IMU fusion framework.

2.1.Mechanical design.

The mechanical design of the robot was developed in SolidWorks, a widely used 3D computer-
aided design (CAD) platform for robotic prototyping. The architecture consists of a mobile
base, a gripper mechanism, and an object-carrying basket, all mounted on a chassis derived
from the Eddie Robot platform. The mobile base provides stability, traction, and load-bearing
capability, while the gripper is customized to handle cylindrical and irregularly shaped objects
such as bottles and cans. Figure 1 presents the complete mechanical design, including an
isometric view highlighting the component layout (Fig. 1a), a side view emphasizing wheel
clearance and gripper articulation (Fig. 1b), and the final assembled physical prototype (Fig.
1c). The gripper mechanism is actuated by a servo motor that delivers controlled angular
displacement for reliable grasping. The end effector is designed with compliant gripping force
to minimize the risk of damaging fragile objects. The basket is dimensioned to store multiple
retrieved items and is mounted to the base using a shock-dampening system to reduce
vibrations during locomotion.



Advanced Mechanical and Mechatronic Systems 2(1), 2026, 1-15

(2) (b)

(o
Figure 1. Robot design: (a) Isometric view; (b) Side view; (c) current design.

2.2.Embedded system architecture.

The system employs a modular embedded architecture for both sensing and actuation. An
Arduino Nano serves as the central controller, chosen for its compact form factor and adequate
input/output capabilities. It interfaces seamlessly with the various subsystems, as illustrated in
the functional block diagrams (Figures 2 and 3).
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Figure 2. Block diagram of gripper.
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Figure. 3. Block diagram of the object detection.

Key components include:

— Inertial Measurement Unit (GY-25 IMU): Provides real-time measurements of pitch, roll,
yaw, angular velocity, and linear acceleration. Data is transmitted via 12C to the
microcontroller at ~100 Hz sampling rate.

— Servo Motor Driver: Controls the gripper through PWM signals generated by the
microcontroller.

— DC Motor Driver (L298N): Drives the differential wheeled base, enabling forward,
backward, and turning motions.

—  Webcam Module: Captures image data for CNN-based object detection, connected to a
Raspberry Pi (off-board) via USB.

Power is supplied by a 7.4V LiPo battery regulated to 5V and 12V rails for logic and
actuation respectively. The system also includes onboard indicators and safety fuses for
operational integrity.

2.3.Perception and decision system.

The perception system integrates two sensor modalities: a CNN-based visual recognition
engine and an IMU for motion estimation. Together, these enable the robot to identify objects,
localize their positions, and adjust its motion accordingly.

2.3.1.Convolutional Neural Network (CNN).

The object detection algorithm is implemented using a pre-trained CNN architecture, fine-
tuned on a dataset of labeled images representing the target objects. Training is conducted
offline using the OpenCV deep learning module in combination with the TensorFlow/Keras
framework. The inference pipeline begins with real-time image acquisition from a 720p
webcam, followed by pre-processing steps in which frames are resized, normalized, and
transformed into input tensors. The CNN then classifies objects and predicts bounding boxes,
after which non-maximum suppression is applied to remove redundant detections. A simplified
workflow is presented in Figure 4. The system achieves an average inference time of
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approximately 120 ms per frame on a Raspberry Pi 4, making it suitable for semi-real-time
applications. The detected object coordinates are transmitted to the Arduino controller via serial
communication, where they are used for motion planning and control.
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Figure 4. The workflow of an image classification system.
2.3.2. Inertial measurement unit (IMU).

The GY-25 IMU module provides six degrees of freedom (6-DoF) motion tracking,
incorporating an accelerometer to measure linear acceleration along the X, Y, and Z axes, and
a gyroscope to measure angular velocity around the same axes. In some configurations, an
additional magnetometer is included to estimate heading based on the Earth’s magnetic field.
The raw IMU data are processed using a complementary filter algorithm to reduce sensor noise
and produce smoother orientation estimates. Among the estimated parameters, the yaw angle
is particularly critical, as it allows the robot to align its heading with the target object.
Furthermore, the IMU contributes to short-range drift-corrected position estimation, especially
in scenarios where visual tracking becomes unreliable.

2.3.3. Sensor fusion and control strategy.

The The fusion of CNN-based vision and IMU data is implemented through a rule-based state
machine. The control algorithm interprets object position provided by the CNN and orientation
estimated by the IMU to generate motion commands. These commands follow a sequential
logic in which the robot first rotates to align with the target object until its center coincides
with the center of the visual field. Once aligned, the robot advances toward the object while
continuously tracking its position. When the object is within grasping distance, the gripper
mechanism is engaged to secure it, after which the robot retracts and deposits the object into
the carrying basket. Future enhancements to this framework will incorporate Kalman filtering
for more robust sensor fusion as well as proportional—integral-derivative (PID) control for
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improved motion stabilization. Overall, the robot’s design emphasizes modularity, real-time
operation, and low-cost hardware integration. By combining vision and inertial sensing, the
system achieves greater autonomy and robustness in object collection tasks. The subsequent
section presents the results of real-world test scenarios that validate the effectiveness of this
design.

2.4.Algorithm implementation and system control.

The The implementation of the object collection algorithm involves multiple integrated
modules running on an embedded platform (Raspberry Pi 4), with control commands relayed
to an Arduino Nano that interfaces with the actuators. The primary algorithmic stages include
object detection using a Convolutional Neural Network (CNN), orientation estimation from an
Inertial Measurement Unit (IMU), sensor fusion for alignment accuracy, and motion control
for object pickup. The CNN model, trained on a dataset of labeled object classes, performs
inference on real-time camera input using the Ultralytics YOLOv5 framework optimized for
ARM-based processors. The detected object coordinates are subsequently translated into robot-
relative position targets.

In parallel, the IMU provides continuous feedback on orientation parameters (yaw, pitch,
and roll) and linear acceleration, which are used to stabilize navigation, particularly when
approaching rotated or angled objects. Fusion of CNN-based positional data with IMU
orientation information is achieved through a rule-based decision tree that aligns the robot’s
heading before advancing toward the target. The control logic is implemented through a finite
state machine (FSM), which governs the robot’s behavior across five states: SEARCH,
ALIGN, ADVANCE, GRASP, and RETURN. Transitions between these states are triggered
by sensory thresholds; for instance, when the detected object enters the central region of the
frame and the orientation error falls within £5°, the FSM transitions from ALIGN to
ADVANCE.

Motion control is carried out through a differential drive configuration, where velocity
and turning commands are generated based on real-time feedback. A proportional controller
(P-controller) is employed for angular correction, while a fixed forward velocity ensures
stability during approach. The gripper mechanism is actuated using a servo motor, with opening
and closing durations experimentally tuned to achieve reliable grasping. This architecture
provides a modular and interpretable control framework well suited for embedded applications.
Future work may replace the FSM with a learning-based policy or introduce adaptive
proportional-integral—derivative (PID) control to improve responsiveness and adaptability in
unstructured environments.

3. Results and Discussion

This section presents and analyzes the experimental results obtained from the object detection
system integrating Convolutional Neural Networks (CNN) with motion data from the Inertial
Measurement Unit (IMU). The objective of these experiments is to evaluate the robot’s ability
to detect, classify, and collect objects in real time using multi-sensor input. The results are
discussed with respect to system performance, detection accuracy, and the effectiveness of
sensor integration.

3.1.CNN-based object detection results.
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The object detection subsystem, powered by a CNN model fine-tuned for real-time
classification, demonstrated strong performance across various object types. Figure 5 shows
the result of a successfully classified water bottle, where the CNN model outputs a bounding
box along with the class label and confidence score, while Figure 6 further illustrates the
model’s robustness when presented with multiple objects simultaneously. On average,
detection confidence across all tested objects exceeded 90%, particularly under well-lit and
unobstructed conditions. The CNN model achieved inference speeds of approximately 8-9
frames per second (FPS) on the Raspberry Pi 4 platform. Although this rate may not be
sufficient for high-speed robotic applications, it is adequate for controlled indoor environments
in which the robot operates at a moderate pace. Some limitations were observed under poor
lighting conditions and in cases of partial occlusion, where detection accuracy decreased
slightly. These challenges highlight the need for enhanced pre-processing techniques or the
inclusion of more diverse training datasets. Overall, the results confirm the reliability of CNNs
as vision modules for autonomous object recognition and validate the integration of lightweight
deep learning models on embedded platforms.

Figure 5. Image classification of a water bottle.

Figure 6. Image classification of multiple objects.

3.2.IMU sensor data and motion estimation.

The IMU sensor captured real-time kinematic data including acceleration, angular velocity,
and orientation. The individual sensor outputs are illustrated in Figures 7-9:
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Acceleration (m/s"2):
- X-axis: 0.25

- Y-axis: 1.02
- Z-axis: 9.81

Figure. 7. Acceleration Data

Angular Velocity (degrees/s):
- X-axis: 10.5
- Y-axis: -2.3
- Z-axis: 5.8

Figure 8. Gyroscope Data

Magnetic Field (microteslas):
- X-axis: 23.4
- Y-axis: -12.1
- Z-axis: 45.8

Figure 9. Magnetometer Data

Fused Orientation (degrees):
- Roll: 15.2

- Pitch: -8.7
- Yaw: 102.6

Figure 10. Sensor Fusion Data

3.2.1. Accelerometer data.

Figure 7 shows the raw acceleration data across the X, Y, and Z axes. These readings reflect
the robot’s movement patterns, with peaks corresponding to acceleration during forward
motion and dips during braking. Such data is critical for estimating displacement over time,
particularly in scenarios where visual feedback is unavailable.

3.2.2. Gyroscope data.

Figure 8 depicts angular velocity readings from the gyroscope. These values allow the system
to monitor rotation rates and infer changes in heading, which is particularly important during
turning maneuvers and for aligning the robot with detected objects.

3.2.3. Magnetometer and orientation estimation.

Although optional, the magnetometer provides heading correction by referencing Earth’s
magnetic field. Sensor fusion between the gyroscope, accelerometer, and magnetometer
enables robust yaw estimation, especially when drift accumulates in IMU-only calculations.
Figures 7-9 collectively illustrate raw IMU data from accelerometers, gyroscopes, and
magnetometers. To quantify the IMU’s contribution, trials were conducted with and without
IMU-based orientation feedback. Without IMU integration, the robot misaligned in 32% of
10
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trials when navigating toward rotated targets, while the inclusion of IMU data reduced
misalignment to 9%, representing a 23% improvement in rotational tracking. Despite relying
on raw sensor fusion, IMU feedback clearly enhanced the system’s heading estimation during
motion.

3.3. Sensor fusion and environmental awareness.

Figure 10 illustrates the fusion of IMU and visual data, which significantly improved the robot's
ability to track its pose and estimate object locations. The fusion algorithm integrates bounding
box coordinates obtained from the CNN with orientation data from the IMU, maintaining
accurate alignment with targets even under transient occlusion or motion blur. Testing revealed
notable benefits, including improved tracking stability, smoother navigation due to drift
correction, and reduced grasping errors through compensation for noisy or misaligned visual
detections. These findings highlight the importance of multimodal sensing for robust
perception in dynamic environments. The current implementation employs a rule-based state
machine for control and sensor fusion. While this deterministic approach enables fast
integration on microcontrollers, it lacks adaptability. More advanced techniques such as
Extended Kalman Filters (EKF) or Unscented Kalman Filters (UKF) could provide
probabilistic modeling of uncertainty, and learning-based controllers such as reinforcement
learning or LSTM-based fusion could offer long-term adaptability. However, these methods
were not implemented due to computational and integration constraints, which are
acknowledged as a limitation of the present system.

3.4. Object grasping and retrieval performance.

Following detection and alignment, the robot executed object collection tasks through
coordinated movements controlled by the Arduino Nano. The success rate for object pickup
exceeded 85% in structured scenarios and reached approximately 72% in cluttered or uneven
environments. These limitations are largely attributed to the rigid plastic design of the gripper.
Future iterations will explore compliant gripper mechanisms using silicone or soft robotics
principles to improve adaptability, particularly for deformable or irregularly shaped objects.
Performance was strongly influenced by alignment accuracy derived from CNN-IMU fusion,
which ensured that the gripper was guided to the correct location. Mechanical limitations
occasionally caused slippage or failed pickups, indicating opportunities for mechanical
redesign. Additionally, latency in the feedback loop introduced small delays between detection
and actuation, which could be minimized through higher-bandwidth communication or
predictive control strategies.

3.5. Comparative analysis and system evaluation.

Compared to vision-only systems, the CNN-IMU robot demonstrated significantly higher
reliability in navigation and object engagement tasks. While CNN-based approaches alone are
prone to errors from visual ambiguities, the integration of inertial sensing reduced uncertainty
and improved task success under challenging conditions. The modular design further allows
easy adaptation to different object types or operational contexts, for example, by retraining the
CNN on domain-specific datasets or adjusting control thresholds. Relative to a vision-only
baseline, the CNN-IMU system improved task success by 26%. However, this work does not
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directly benchmark against other state-of-the-art CNN-IMU platforms such as VIPose, LVID-
SLAM, or Dynamic-VINS, which limits claims of broader superiority.

3.6. Real-world deployment considerations.

Although this study focuses on indoor conditions, real-world applications will encounter
uneven terrain, variable lighting, and dynamic obstacles. Such factors could degrade CNN
detection performance and IMU stability. For instance, outdoor lighting may saturate visual
sensors, and terrain vibrations may exacerbate IMU drift. Future work should therefore
integrate adaptive image pre-processing, outdoor-optimized datasets, and advanced IMU filters
with dynamic bias correction to maintain reliability in diverse environments.

3.7 Limitations and future work.

While the experimental results validate the proposed system’s functionality, several limitations
remain. The Raspberry Pi 4 imposes constraints on the complexity of CNN architectures that
can be deployed; edge accelerators such as the NVIDIA Jetson Nano or Coral TPU could
enable higher inference speeds. Long-term IMU-only navigation exhibited drift despite sensor
fusion, highlighting the need for advanced filtering techniques such as EKF or adaptive fusion.
Autonomy is currently limited by reliance on rule-based control, which could be replaced with
learning-based policies to improve adaptability. Furthermore, all experiments were conducted
in indoor laboratory conditions, whereas real-world deployment will require robustness to
terrain variability, dynamic obstacles, and environmental noise.

In summary, the results demonstrate that integrating CNN and IMU sensors significantly
enhances robotic perception and object handling. Through real-time fusion of visual and
inertial data, the robot achieved robust object detection, accurate orientation tracking, and high
retrieval success, establishing a promising foundation for broader applications in autonomous
systems.

4. Conclusions

This study presented the design, development, and evaluation of an autonomous mobile robot
capable of detecting, tracking, and collecting objects through the integration of a Convolutional
Neural Network (CNN) and an Inertial Measurement Unit (IMU). The fusion of vision-based
and inertial sensing enhanced the robot’s environmental awareness, enabling reliable object
localization and navigation in real time. By combining a lightweight CNN model with
embedded IMU feedback, the system achieved high accuracy in object classification and
effective pose estimation during dynamic motion. Experimental results confirmed that sensor
fusion significantly improved robustness, particularly in scenarios involving visual occlusion
or rapid movements. The robot achieved a success rate of over 85% in structured object
retrieval tasks and demonstrated resilience in cluttered conditions due to its orientation-
corrected control logic. Furthermore, the integration of onboard computation, modular
mechanical design, and closed-loop feedback between perception and actuation proved
effective for scalable and adaptable robotic applications. The proposed system has potential for
deployment in logistics automation, assistive robotics, smart manufacturing, and
environmental monitoring. Its flexible design allows for retraining of the CNN model for
different object classes and mechanical adaptation for domain-specific tasks. Future work will

12



Advanced Mechanical and Mechatronic Systems 2(1), 2026, 1-15

focus on improving computational efficiency using edge Al accelerators such as the NVIDIA
Jetson Nano or Google Coral, enhancing motion planning with learning-based control
strategies and predictive algorithms, extending operation to outdoor and semi-structured
environments where illumination and terrain variability present challenges, and implementing
advanced sensor fusion techniques, including the Extended Kalman Filter (EKF) or
probabilistic SLAM, for accurate global localization and mapping. In conclusion, the
integration of deep learning-based vision with inertial sensing provides a promising pathway
for developing cost-effective and reliable autonomous systems capable of real-world object
manipulation, and the findings of this research establish a solid foundation for advancing
intelligent, sensor-driven robotics.
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