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ABSTRACT: The integration of Explainable Artificial Intelligence (XAI) into medical 

imaging is pivotal in addressing the “black-box” limitations of deep learning models, which 

often hinder clinical trust and regulatory approval. This review provides a comprehensive 

examination of XAI techniques that enhance interpretability and transparency in diagnostic 

imaging applications. Key approaches such as feature visualization (Grad-CAM, Integrated 

Gradients), attention mechanisms, symbolic reasoning, and example-based methods—are 

explored alongside their practical implementations. Specific cases in cardiac imaging, cancer 

diagnostics, and brain lesion segmentation illustrate the value of XAI in improving clinical 

decision-making and patient care. Moreover, the review highlights major challenges, including 

the trade-off between accuracy and interpretability, ethical and legal constraints, integration 

barriers within clinical workflows, and the complexity of medical data. To address these issues, 

future research directions are proposed, including the development of more robust example-

based models, ethical frameworks, generalizable architectures, advanced visualization 

techniques, and interdisciplinary collaboration. With continued refinement and responsible 

deployment, XAI systems can enable AI models to become not only accurate but also 

interpretable and clinically relevant. This paper underscores the transformative potential of 

XAI in building trustworthy, transparent, and effective AI-driven diagnostic tools aligned with 

the practical demands of modern healthcare systems. 
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1. Introduction 

Artificial Intelligence (AI) became a transformative force in medical imaging, offering 

substantial improvements in image-based diagnosis, disease detection, and clinical workflow 

optimization [1, 2]. With the rapid advancement of deep learning (DL) models, significant 

breakthroughs were achieved in tasks such as image classification, segmentation, and anomaly 

detection. These AI-powered systems accelerated diagnostic processes, enhanced accuracy, 

and supported decision-making in complex clinical scenarios [3]. 
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Despite these advancements, a major barrier continued to hinder the widespread adoption 

of AI in clinical practice: the lack of transparency and interpretability of high-performing 

models [4]. Many DL systems operated as "black boxes," providing predictions without 

revealing the underlying decision-making process. This lack of explainability was particularly 

concerning in healthcare, where understanding the rationale behind diagnostic outcomes 

remained critical for both clinicians and patients. 

The inability to explain AI-generated decisions undermined clinical trust and introduced 

ethical, legal, and safety concerns, especially in high-stakes domains such as radiology, 

oncology, and neurology [5, 6]. Healthcare professionals needed to validate automated 

recommendations, ensure alignment with medical guidelines, and communicate findings 

effectively to patients. As a result, there was growing demand for AI systems that were not 

only accurate but also transparent and interpretable. 

XAI emerged to address these concerns by providing interpretable insights into model 

behavior. XAI techniques, including feature visualization, attention mechanisms, rule-based 

reasoning, and post hoc explanation methods, aimed to identify the features or image regions 

most responsible for a model’s prediction [7]. By improving interpretability, XAI facilitated 

clinical acceptance, supported diagnostic decision-making, and helped bridge the gap between 

opaque AI systems and human reasoning. 

This article presented a systematic and comprehensive review of XAI methods in medical 

imaging by evaluating widely used techniques and their applications in various clinical fields 

such as cardiology, oncology, neurology, and dermatology. A structured classification was 

developed to associate each XAI approach with specific clinical tasks and imaging modalities. 

Comparative analyses were conducted on interpretability, performance trade-offs, and the 

ethical and regulatory aspects that accompanied the use of these methods. Some approaches 

that remained rarely implemented in clinical practice, such as example-based methods and 

symbolic reasoning, were highlighted, with emphasis placed on the importance of integrating 

regulatory considerations and practical implementation. The article concluded by mapping 

future research directions focused on developing reliable, generalizable, and ethically sound 

XAI systems for effective integration into clinical practice. 

2. Fundamentals of Explainable Artificial Intelligence 

XAI was an emerging field focused on enhancing the transparency and interpretability of AI 

models. Its primary goal was to enable users, particularly in high-stakes fields such as 

healthcare, to understand, trust, and effectively manage the decisions produced by AI systems. 

Unlike traditional "black box" models that offered limited insight into their internal logic, XAI 

methods aimed to reveal and communicate the reasoning behind model outputs in ways that 

were accessible to human users [8]. 

A foundational principle of XAI involved the distinction between transparency and 

interpretability. Transparency referred to how clearly the internal mechanisms of a model could 

be examined, while interpretability related to how easily humans could understand the 

relationships between inputs and outputs in a model’s decision-making process [9, 10]. In 

medical imaging, both attributes were essential because clinical decisions required clear 

justification and alignment with established diagnostic protocols. 

XAI included a variety of explanation types to address different user needs and technical 

contexts. For instance, techniques such as Local Interpretable Model-Agnostic Explanations 
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(LIME) and SHapley Additive exPlanations (SHAP) were model-agnostic methods applied 

after training to interpret individual predictions [11]. Alternatively, some models were 

inherently interpretable by design, such as decision trees and rule-based systems, which 

provided native transparency and were often preferred in sensitive or regulated domains [12]. 

Another important aspect of XAI was its sensitivity to context. The effectiveness of an 

explanation depended on its relevance to the target audience and the specific application 

domain. Technical explanations might have been suitable for data scientists but too complex 

for clinicians or patients. Therefore, successful implementation of XAI required careful 

consideration of who the end users were and what level of understanding was necessary [13]. 

This ensured that explanations were not only technically accurate but also meaningful in 

practice. 

In medical imaging, the application of XAI methods required particular attention to the 

diversity of imaging modalities, each with unique visual characteristics and clinical 

implications. To provide a visual overview of this diversity, Figure 1 presented illustrations of 

some of the most common types of medical imaging that formed the basis for the development 

and application of XAI approaches. 

 
Figure 1. Representative medical imaging modalities: (a) chest X-ray, (b) breast ultrasonography, (c) brain MRI, 

(d) histopathological tissue imaging, and (e) retinal fundus. These modalities demonstrate the diversity of visual 

data that needs to be interpreted by the XAI method in support of clinical decisions [14]. 

3. XAI Techniques in Medical Imaging 

The classification of XAI techniques in this study was based on the main interpretability 

strategies used to explain model prediction results. These approaches included feature 

visualization, attention mechanisms, rule-based reasoning, example-based methods, and post 

hoc explanations. This taxonomy was developed by referencing findings from recent scientific 

literature and was contextually adapted to meet interpretability needs in clinical practice, 

particularly in the field of medical imaging, which required transparency, accountability, and 

clarity in decision-making processes. 

3.1. Feature visualization techniques. 

Feature visualization techniques were essential for enhancing the interpretability of deep 

learning models in medical imaging. These methods provided visual insights into the regions 
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or features of an input image that contributed most to a model’s decision, thereby improving 

transparency and clinical trust. Grad-CAM was one of the most widely used techniques, 

generating class-specific heatmaps that highlighted image areas with the greatest influence on 

the model’s prediction [15]. It was applied in various clinical contexts, such as detecting 

attention-deficit/hyperactivity disorder using EEG data [15], identifying cataracts from fundus 

images [16], and diagnosing hip fractures in pelvic radiographs [17]. 

Other methods, such as Integrated Gradients and SmoothGrad, increased the precision 

and reliability of visual explanations. Integrated Gradients attributed model predictions to input 

features by integrating gradients along a path from a baseline to the actual input, enabling 

quantification of feature importance [18, 19]. SmoothGrad enhanced saliency maps by adding 

noise to inputs and averaging the gradients, thereby reducing visual artifacts and clarifying 

relevant feature contributions [18]. 

Additional approaches included activation maps and deconvolution methods, which 

visualized internal feature activations within convolutional neural networks. These helped 

illustrate how models processed information across layers. Layered Grad-CAM extended 

traditional Grad-CAM by aggregating visual explanations from multiple layers, improving 

interpretability in complex architectures such as Feature Pyramid Networks, which were used 

in polyp segmentation [20]. Example-based techniques also supported explainability by 

retrieving and displaying similar cases from training data, helping clinicians understand and 

validate AI predictions in practice [21]. 

3.2. Attention mechanisms. 

Attention mechanisms were an important component of XAI techniques in medical imaging, 

offering improved interpretability by allowing models to focus on the most relevant regions of 

input data. These mechanisms were generally categorized as post hoc attention, which analyzed 

pre-trained networks to uncover decision logic, and trainable attention, which guided model 

learning toward informative regions during training [22]. This categorization enabled attention-

based models to enhance both accuracy and transparency in diagnostic applications. 

In classification and segmentation tasks, attention mechanisms demonstrated significant 

utility. Models that incorporated attention achieved high accuracy in diagnosing diseases such 

as Covid-19, breast cancer, lung cancer, and retinal conditions [23]. For example, Covid-19 

radiography classification achieved up to 98 percent accuracy, while lung cancer classification 

reached up to 99.8 percent. In segmentation, architectures such as MDSU-Net employed dual 

attention and attention gates to enhance feature representation and delineation quality [24]. 

Furthermore, self-attention mechanisms in transformer-based models identified critical regions 

in medical images, thereby increasing interpretability and model trustworthiness [25]. 

Several explainability techniques were used in conjunction with attention-based models. 

Grad-CAM was frequently employed to visualize relevant image regions associated with 

predictions [23, 26], while LIME and SHAP provided model-agnostic interpretations by 

attributing predictions to input features. More recently, techniques such as Attention-Gradient 

Class Activation Mapping (A-GCAM) were introduced to analyze attention attribution in a 

more transparent way [27]. Despite these advancements, challenges remained, including the 

complexity of attention modules and the lack of standardized metrics for clinical validation 

[28]. Ongoing research was necessary to develop attention mechanisms that were both accurate 

and clinically interpretable. 
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3.3. Rule-based and symbolic XAI approaches. 

Rule-based and symbolic approaches played a critical role in enhancing the transparency, 

reliability, and clinical relevance of AI systems in medical imaging. These techniques were 

well suited for healthcare applications due to their inherent interpretability and alignment with 

clinical guidelines. Rule-based systems provided explicit, understandable decision logic, 

allowing clinicians to verify outcomes and validate model behavior against established 

protocols. 

A notable example was the neurosymbolic system developed for vertebral compression 

fracture detection in computed tomography scans. This system combined deep learning for 

vertebral segmentation with a shape-based algorithm that analyzed vertebral height 

distributions to define diagnostic rules. It achieved 96 percent accuracy and 91 percent 

sensitivity, showing that rule-based methods could perform comparably to black-box models 

while offering greater interpretability [29]. Another example was the Adaptive Neuro-Fuzzy 

Inference System (ANFIS), used in Intensity-Modulated Radiation Therapy planning. ANFIS 

combined neural networks with rule-based reasoning to optimize treatment plan selection and 

provide interpretable justifications for decisions, thereby increasing clinical trust [30]. 

Symbolic XAI techniques extended interpretability further by employing logical or rule-

based representations. For instance, one deep learning framework for cancer image 

classification incorporated symbolic reasoning to deliver high accuracy (97.72 percent) along 

with user-adaptive explanations for healthcare professionals [31]. Another model for contrast 

phase detection in abdominal CT scans used a hybrid approach, combining deep learning with 

rule-based methods. It achieved 92.3 percent accuracy and applied Shapley values to explain 

the relevance of radiodensity features, improving transparency and clinical usefulness [32]. 

3.4. Example-based and case-based reasoning. 

Example-based and case-based reasoning offered intuitive and clinically relevant explanations 

by referencing specific past cases. These approaches helped users understand AI model 

decisions by illustrating how similar inputs had been classified. Prototype-based methods 

identified representative examples during training and compared new inputs to these 

prototypes. Models such as ProtoPNet were successfully applied in medical fields like brain 

tumor classification, offering interpretability without compromising accuracy [33]. 

Retrieval-based techniques also provided explanations by retrieving similar examples 

from a reference dataset. This enabled clinicians to validate AI predictions by comparing them 

to previously seen and verified cases [34]. Another powerful method was counterfactual 

explanation, which showed how small changes to input data could alter predictions. This 

highlighted model decision boundaries and offered insights into alternative diagnostic 

outcomes [34]. Case-Based Reasoning (CBR) extended this approach by using analogical 

reasoning to address new clinical problems based on past cases. CBR systems provided visual 

explanations by displaying similar cases and identifying shared characteristics. In breast cancer 

diagnosis, for example, CBR systems helped clinicians classify findings by referencing 

comparable historical examples [35]. Hybrid models that combined CBR with deep learning 

demonstrated improved accuracy and interpretability, as seen in mammogram analysis systems 

[36]. 
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3.5. Surrogate and post-hoc explainers. 

Surrogate and post hoc explainers were vital to XAI in medical imaging. As AI-based 

diagnostic tools became more widespread, ensuring transparency and interpretability was 

essential for clinical adoption and trust. These XAI techniques made the rationale behind model 

predictions accessible, allowing clinicians to understand and justify automated outputs [37]. 

Post hoc explainers were applied after training and did not interfere with model performance. 

One such method was counterfactual explanation, which altered input data to observe changes 

in predictions. While informative, this technique was computationally demanding, especially 

in high-dimensional medical imaging contexts [38]. Saliency mapping was another common 

approach, highlighting influential image regions. Techniques such as integrated gradients and 

guided backpropagation were widely used, each with strengths in localization and 

computational efficiency [39].  

In contrast, surrogate explainers aimed to approximate complex models using simpler, 

interpretable alternatives. LIME was a well-known example, constructing locally linear models 

to explain specific predictions [40]. Similarly, rule-based surrogates mimicked the decision 

logic of complex models through predefined rules, making them especially valuable in 

regulated medical environments [41]. These surrogate models played a key role in improving 

clinician trust and supporting compliance with ethical and regulatory standards. Table 1 shows 

Comparative summary of explainable AI (XAI) techniques in medical imaging. 

Table 1. Comparative summary of explainable AI (XAI) techniques in medical imaging. 

Engineering 
Medical 

Domain 
Explanation Type Strengths Limitations 

Grad-CAM 

(Gradient-weighted 

Class Activation 

Mapping) [42]. 

Radiology 

(MRI, CT, X-

ray, Histology) 

Gradient-based 

Heatmap (visual 

class localisation) 

Highlights important 

areas in the image, 

compatible with 

various CNN 

architectures 

Depends on the last layer of 

the CNN, lacks precision for 

complex pixel-level 

segmentation 

SHAP [43]. Oncology 

(Breast, Lung, 

Colon) 

Shapley value 

(global and local 

feature attribution) 

Computationally 

expensive, 

interpretation of 

visualisations can be 

complex for non-

technical people 

Provides quantitative 

contribution of each pixel to 

prediction, accurate, 

consistent in explanation 

LIME [44]. Radiology Local Surrogate 

(superpixel and 

local interpretable 

model) 

Flexible, applicable to 

all models, visually 

clear 

Parameter sensitive, results 

may vary between 

executions 

Attention U-Net 

[42]. 

Radiology 

(Abdomen, 

Brain, Chest) 

Intrinsic explanation Focus on important 

anatomical areas, 

improves 

segmentation 

Architecture must be 

modified, can overfit on 

small data 

CBR (Case 

Retrieval & 

Matching) [45]. 

Paediatric 

Oncology 

(Kidney 

Tumour) 

Analogue reasoning 

(similarity-based 

retrieval) 

Selects most similar 

cases from case base 

for training, improves 

generalisation 

Depends on quality of case 

base, performance may 

degrade when case base is 

limited 

ANFIS (Fuzzy 

Rule-Based + 

Neural Network) 

[46]. 

Neurology 

(Brain Tumour) 

Fuzzy Rule-Based 

(interpretable) 

Fuzzy rule-based 

clear interpretation, 

suitable for expert 

knowledge integration 

Less efficient for big data, 

needs manual tuning of rules 

and parameters 

Inception v3 + 

Integrated 

Gradients [47]. 

Radiology 

(Pneumonia) 

Gradient-based 

Attribution (pixel-

level) 

Provides visualisation 

of important areas in 

X-ray images, 

improves clinical 

confidence 

Needs baseline image and 

additional computation, 

sensitivity to baseline 

selection 
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4. Applications of XAI in Medical Imaging 

4.1. Cardiac imaging. 

The application of AI in cardiac imaging significantly advanced diagnostic capabilities by 

offering improved accuracy, automated quantification, and enhanced workflow efficiency. AI 

algorithms were widely implemented in coronary computed tomography angiography (CCTA) 

to evaluate calcium scores, quantify coronary stenosis, and analyze plaque composition [48]. 

Similarly, in cardiac magnetic resonance imaging (CMR), AI supported the segmentation of 

cardiac chambers and the characterization of myocardial tissue, which were essential for 

diagnosing myocardial infarction and cardiomyopathy [49]. In echocardiography, AI 

facilitated the segmentation of cardiac structures to assess valvular function and wall motion 

abnormalities [48]. Despite these advancements, the lack of interpretability in conventional AI 

systems limited their integration into clinical workflows, where explainability was essential for 

clinical acceptance and regulatory compliance. 

XAI addressed this limitation by providing transparency into the model’s decision-

making process, enabling clinicians to understand, validate, and trust AI-generated outputs. In 

diagnostic applications, XAI techniques such as saliency maps, attention mechanisms, and post 

hoc attribution methods helped identify the specific regions or features that contributed to 

model predictions. These explanations were particularly important in high-stakes scenarios 

such as identifying myocardial ischemia or classifying coronary lesions. Additionally, AI 

demonstrated substantial benefits in improving workflow efficiency by reducing image 

acquisition and post-processing time, which accelerated diagnostic reporting without 

compromising accuracy [50]. XAI also contributed to reducing interobserver variability by 

offering consistent, interpretable outputs that aligned with clinical reasoning [50]. Therefore, 

the integration of XAI in cardiac imaging represented a critical step toward safe, efficient, and 

trustworthy AI-assisted diagnostics. 

4.2. Cancer diagnosis. 

XAI became an essential component in cancer diagnostics by offering interpretable insights 

that enhanced the clinical trustworthiness of AI systems. Across various cancer types, XAI was 

integrated into both image-based and biomarker-based diagnostic workflows to address the 

limitations of black-box models. In oral cancer detection, the EXAIOC framework combined 

convolutional neural networks (CNNs) with fuzzy logic to manage data uncertainties. 

Techniques such as Layer-wise Relevance Propagation (LRP) and Grad-CAM generated visual 

explanations that improved interpretability and supported clinical decision-making [51]. In 

breast cancer detection, explainable deep recurrent convolutional neural networks (RCNNs) 

enhanced with transfer learning effectively captured both spatial and temporal features in 

mammographic images [52]. 

XAI also demonstrated value in prostate, renal, and liver cancer diagnostics through 

interpretable modeling techniques. In prostate cancer, LIME and shape analysis were used to 

interpret MRI-based predictions, thereby addressing the opacity of deep learning models and 

increasing clinical trust [53]. For renal cancer detection, CNNs applied to high-resolution 

medical images, combined with Grad-CAM and LIME, achieved high diagnostic accuracy 

while providing visual explanations to help clinicians understand model outputs [54]. 

Similarly, the integration of U-Net with LIME in liver cancer detection enabled more accurate 
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segmentation and clearer model interpretation, thereby supporting physician decision-making 

[55]. 

5. Challenges in XAI for Medical Imaging 

The implementation of XAI in medical imaging offered great potential to enhance diagnostic 

precision and build clinical trust. Nevertheless, several critical challenges needed to be 

addressed to ensure that XAI systems were not only accurate but also ethical, transparent, and 

practical for clinical use. As AI technologies became more advanced, the complexity of the 

models increased, making it more difficult to design systems that were both interpretable and 

suitable for deployment in healthcare settings. A major obstacle to XAI adoption was the 

opaque nature of many high-performing AI models, especially those based on deep learning. 

These models often generated predictions without offering insight into how or why decisions 

were made [56, 57]. In medical environments, where accountability and justification were 

essential, this lack of transparency could diminish trust among clinicians and patients [58]. 

Without clear interpretability, AI tools might be viewed as unreliable or unsuitable for clinical 

decision-making. 

Another central challenge involved managing the trade-off between interpretability and 

predictive accuracy. Complex models that delivered high performance were often difficult to 

interpret, whereas simpler models were easier to explain but less accurate [59, 60]. This 

compromise created a tension between achieving state-of-the-art performance and ensuring 

clinical usability. Striking the right balance remained a core focus of XAI research, particularly 

in critical diagnostic domains. Incorporating XAI into existing clinical workflows also 

presented significant challenges. To be useful, AI-generated explanations needed to be timely, 

clinically relevant, and understandable to medical professionals working under time pressure 

[61]. If explanations were too abstract, delayed, or disconnected from clinical logic, they were 

unlikely to be used. Successful integration required collaboration among AI developers, 

clinicians, and system engineers to ensure that outputs were practical and aligned with 

healthcare needs. 

Ethical and regulatory issues further complicated the use of XAI in medical imaging. 

Concerns such as algorithmic bias, patient data privacy, and the risk of incorrect diagnoses had 

to be addressed with caution [62]. These challenges were intensified by the fact that ethical 

guidelines and legal regulations had not kept pace with the rapid evolution of AI technologies. 

Without proper oversight, even explainable models might cause harm, particularly if their 

outputs were based on biased or low-quality data. Lastly, fostering trust across stakeholders, 

including clinicians, patients, healthcare administrators, and regulators, was critical for the 

success of XAI in medical applications [63]. Clear and open communication about how models 

were developed, trained, and validated was essential. Furthermore, technical and data-related 

limitations had to be considered. Medical data was often complex, high-dimensional, and 

variable. Designing interpretable models that could effectively learn from such data remained 

a continuing challenge. Ensuring data integrity, governance, and contextual relevance was key 

to building dependable and explainable AI systems for clinical use [64]. 

6. Future Directions 

Future research in XAI for medical imaging is expected to focus on refining example-based 

techniques, which remained underutilized in clinical practice. These methods offered potential 
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for improving interpretability by presenting concrete, relatable examples that could justify AI 

model predictions. Moving forward, researchers needed to develop more robust and scalable 

example-based models that generated intuitive explanations aligned with clinical reasoning 

[65]. Emphasis should be placed on ensuring these methods were both accurate and accessible 

to healthcare professionals in real-world settings. Addressing ethical and technical challenges 

would be critical to the responsible advancement of XAI in medical imaging. Future research 

should prioritize the development of ethically sound models that aligned with the values and 

needs of the healthcare sector [66]. This included addressing persistent concerns related to 

algorithmic bias, data privacy, and model security [67]. Ensuring that XAI methods complied 

with emerging ethical frameworks would be essential for earning the trust of both clinicians 

and patients. 

Improving the generalizability and diagnostic performance of explainable models 

remained a central research objective. Combining powerful architectures such as ResNet50 

with XAI techniques showed potential in improving transparency and performance 

simultaneously [68]. Future investigations should build upon these efforts by exploring hybrid 

models that balanced interpretability with high predictive accuracy, ensuring they were 

adaptable across various imaging modalities and patient populations. The convergence of XAI 

with Big Data Analytics (BDA) and the Internet of Medical Things (IoMT) represented a 

transformative direction in healthcare innovation. Leveraging these technologies could 

facilitate the development of scalable XAI systems capable of processing large, heterogeneous 

datasets for real-time decision support [69]. Research should focus on optimizing XAI 

algorithms to efficiently manage and interpret high-volume data streams, thereby supporting 

personalized and cost-effective care at scale. There was also an urgent need for standardized 

evaluation metrics and regulatory frameworks to guide the responsible deployment of XAI 

systems in clinical environments [64]. Future work should aim to establish consensus on best 

practices for model validation, interpretability assessment, and ethical compliance. Regulatory 

bodies and research institutions must collaborate to create guidelines that ensured fairness, 

transparency, and accountability in AI-driven diagnostics. 

Promoting multidisciplinary collaboration was essential for the successful integration of 

XAI into clinical practice. Partnerships among AI developers, radiologists, and other healthcare 

professionals could ensure that XAI models were designed with clinical utility in mind [70]. 

Future initiatives should support co-development approaches that aligned technical innovation 

with the workflows and decision-making processes of end users, thereby improving model 

relevance and adoption. Finally, the development of advanced visualization techniques held 

great promise for enhancing the interpretability of AI models. Pixel-level heatmaps and layered 

visual explanations could help clinicians better understand model predictions and their 

underlying rationale [71]. Future research should focus on improving the resolution, clarity, 

and interactivity of these visual outputs to deliver more actionable insights that supported 

clinical decision-making. 

7. Conclusions 

XAI was an essential enabler for the responsible and effective adoption of AI in medical 

imaging. Through a detailed review of current techniques and applications, this article 

demonstrated how XAI could bridge the gap between high-performing deep learning models 

and the need for interpretability in clinical environments. Despite notable progress, significant 
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challenges remained, including data limitations, ethical concerns, and model complexity. 

Future research must prioritize the development of interpretable, generalizable, and ethically 

sound XAI models that were compatible with clinical workflows. Furthermore, advancements 

in visualization tools, example-based reasoning, and collaborative model design would be 

critical for improving clinical usability. Ultimately, the continued evolution of XAI in medical 

imaging had the potential to foster greater trust, transparency, and accountability in AI-assisted 

healthcare delivery. 
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