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ABSTRACT: Integrating artificial intelligence into computational mechanics represents a 

transformative paradigm shift in modelling, simulation, analysis, and design methodologies. 

By harnessing AI's power while ensuring its explainability to the users, we can enhance 

predictive capabilities, optimize design and performance, accelerate research and development 

efforts, and empower our engineers to address longstanding challenges. Let us embrace this 

transformative technology and work together to unlock its full potential in advancing the 

frontiers of computational mechanics.  
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1. Introduction 

Artificial intelligence (AI) has revolutionized countless fields, and its impact on computational 

mechanics is no exception. Navigating the complexities of material behaviour, structural 

analysis, and fluid dynamics, AI presents unparalleled opportunities for refining predictive 

models, necessitating explainable models, optimizing designs, and accelerating research 

endeavours [1]. This editorial explores the transformative potential of AI in computational 

mechanics and advocates for its widespread integration into both research and practice. 

2. Enhancing Predictive Capabilities 

One of the most compelling aspects of AI in computational mechanics is its ability to enhance 

predictive capabilities [2, 3]. Traditional modelling approaches, which often rely on 

simplifications and assumptions, may fall short of capturing the full complexity of real-world 

phenomena [4]. In contrast, AI excels in identifying patterns and relationships within data [5], 

allowing for not only more accurate forward predictions of material behaviour, structural 

responses, and fluid flows [3, 6] but also the resolution of inverse problems to deduce unknown 

characteristics [7]. In addition, AI-enabled predictive models often achieve processing speeds 

orders of magnitude faster than those of traditional approaches [8, 9]. By integrating AI-driven 
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techniques with traditional methods, researchers can develop accurate and efficient models on 

a large scale, thereby leading to more reliable simulations and analyses [10]. 

3. Necessitating Explainable AI 

As we further integrate AI within computational mechanics, the call for explainable AI (XAI) 

becomes increasingly imperative. While beneficial for handling intricate computations, the 

complexity of AI-driven models introduces a layer of opacity that can hinder trust and 

reliability. Comprehending the rationale behind AI predictions is paramount in fields as critical 

as computational mechanics, where decisions directly impact safety and functionality. For 

instance, AI algorithms can optimize the design based on safety criteria, such as load capacities 

and structural stability defined by structural engineers, but without a good understanding of the 

reasoning behind the AI predictions, engineers might not be able to detect bias and prevent the 

failure of AI-generated design solution in maintaining safety requirements in practice.  

XAI facilitates the inclusion of domain knowledge into physics-informed hybrid models, 

thereby enhancing transparency, reducing training data requirements, and improving prediction 

accuracy. XAI emerges not merely as a beneficial addition but as a fundamental necessity for 

navigating the complexities of modern technology. It ensures the protection of human well-

being and propels the advancement of science and engineering [11, 12]. 

4. Optimizing Design and Performance 

The transformative role of AI in enhancing design and performance optimization is 

increasingly evident. [13]. By leveraging developed algorithms and techniques, such as meta-

heuristic optimization [14, 15, 16], XAI [17], reinforcement learning [18], and surrogate 

modelling [19],  AI facilitates the exploration of vast design spaces, identifying solutions that 

optimize performance while adhering to constraints such as material properties, environmental 

factors, and cost. This optimization extends beyond mere efficiency, enabling the development 

of innovative designs that push the boundaries of what is physically and creatively possible. 

One example of this capacity is the attempt to minimize the structural weight while maintaining 

the strength [20]. A practical approach for addressing complex problems is to use a hybrid 

algorithm that combines optimization and machine learning techniques, leveraging the benefits 

of both methodologies to create a robust framework. Integrating optimization techniques into 

the machine learning process significantly enhances decision-making capabilities. A hybrid 

algorithm can leverage these optimization capabilities to guide the learning process and 

improve decision-making accuracy and efficiency [21]. Furthermore, AI-driven tools can 

significantly reduce the time and resources required for design iteration cycles, allowing for a 

more agile and experimental approach to engineering challenges [22]. 

5. Accelerating Research and Development 

Integrating AI into computational mechanics also has the potential to accelerate research and 

development efforts across a wide range of applications. By automating labour-intensive and 

repetitive tasks, such as mesh generation [23], model calibration [24, 25], and post-processing 

analysis [26], AI frees researchers to focus on more creative and intellectually challenging 

work aspects. Moreover, AI can accelerate computationally demanding techniques such as 

peridynamics [27, 28]. AI's ability to quickly process and analyze vast datasets enables the 

discovery of new patterns and relationships that might elude traditional approaches. This 
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acceleration speeds up the research cycle and enhances the quality of outcomes, fostering a 

faster transition from theoretical models to practical applications. However, automation has 

several potential limitations or drawbacks, especially in areas like model calibration, where 

human expertise traditionally plays a significant role. For example, models and calibration 

processes can vary greatly depending on the application and domain. Automated systems may 

need help to adapt to this variability or require extensive customization and tuning, reducing 

the overall efficiency gains. Additionally, human experts are adept at handling unforeseen 

scenarios or edge cases that may not have been accounted for in the automation process [29]. 

6. Addressing Challenges and Ethical Considerations 

While the potential benefits of integrating AI into computational mechanics are substantial, it 

is essential to acknowledge and handle the challenges and ethical considerations associated 

with its adoption. These include issues related to the quality and bias of data [30], as well as 

the transparency and interpretability of AI models [31]. In response, initiatives such as the 

Fairness, Accountability, and Transparency (FAT) [32] and AI Fairness 360 [33] have been 

developed. These frameworks focus on establishing principles, metrics, and algorithms 

designed to identify and mitigate bias in machine learning data and models, preventing 

discrimination and ensuring equitable outcomes in AI systems.  

Addressing these challenges demands a concerted effort to develop guidelines and 

standards that ensure the ethical use of AI. Moreover, fostering a multidisciplinary dialogue 

between engineers, computer scientists, ethicists, and policymakers is crucial for navigating 

these complexities. By proactively addressing these challenges and integrating fairness, 

accountability, and transparency principles, we can leverage AI's transformative power whilst 

minimising risks.   
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